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ABSTRACT

This paper extends Thomson's multitaper spectrum esti-
mation method [17] to nonstationary signals. The method
uses a newly{derived set of basis functions which generalize
the concentration properties of the prolate spheroidal wave-
forms [15] to the time{frequency case. We solve for the basis
which diagonalizes the nonstationary spectrum generating
operator over a �nite region of the time{frequency plane.
These eigenfunctions are maximally concentrated to and
orthogonal over the speci�ed time-frequency region, and
are thus doubly orthogonal. Individual spectrograms com-
puted with these eigenfunctions form direct time{frequency
spectrum estimates. We next present a multitaper time{
frequency spectrum estimation procedure using these time{
frequency eigenestimates. Bias and variance expressions are
derived, allowing for a statistical characterization of the ac-
curacy of the estimate. The time{frequency concentration
property of the basis functions yields an estimator with ex-
cellent bias properties, while the variance of the estimate is
reduced through the use of multiple orthogonal windows.

1. TIME{FREQUENCY SPECTRAL ANALYSIS

There have generally been two approaches to time{frequency
spectral analysis. The evolutionary spectrum approaches
(e.g., [14, 7, 8]) model the spectrum as a slowly varying en-
velope of a complex sinusoid. This assumption allows the
averaging of short{time spectral estimates to stabilize the
variance. The second approach is commonly referred to as
Cohen's bilinear class [3], which provides a general formula-
tion for joint time{frequency distributions. Computation-
ally, the evolutionary spectrum methods fall within Cohen's
class.

A subclass of time{frequency distributions are the posi-
tive time{frequency distributions (TFDs) [4]. Postive TFDs
are everywhere nonnegative, and yield the correct univari-
ate marginal distributions in time and frequency (the in-
stantaneous energy and the energy spectral density):

P (t; !) � 0; (1)Z
P (t; !)d! = js(t)j2; (2)

Z
P (t; !)dt = jS(!)j2; (3)

where S(!) denotes the Fourier transform of the �nite en-
ergy signal s(t), and all integrals are from �1 to 1.1

The �rst method for generating positive TFDs used con-
strained optimization, minimizing the cross{entropy to a
prior distribution subject to a set of linear constraints [9].
Positive TFDs have been linked to the evolutionary spec-
trum and estimated via deconvolution [13]. Least-squares
estimation has also been used to compute positive TFDs
[11]. Approximate solutions for positive TFDs have been
obtained through a nonlinear combination of spectrograms
[10].

Another approach to computing time{frequency spec-
tra has been to extend Thomson's multitaper spectral es-
timation method [17] to the nonstationary case through a
sliding{window framework [16]. [1] developed a multitaper
time{frequency spectrum, including a signi�cance test for
nonstationary tones, using Hermite windows, which have
previously been shown to maximize a time{frequency con-
centration measure [5]. [2] extended the Hermite multiwin-
dow method to include a means of reducing artifacts using
a time{frequency mask.

While these methods all provide some representation
of the time{varying frequency content of a signal, they do
not relate the computed distribution to an underlying time{
frequency spectrum (e.g., [1] minimizes the bias between the
multitaper TFD and the Wigner distribution; however, the
Wigner distribution is not nonnegative for arbitrary signals,
and as such is not a valid time{frequency spectrum). As a
result, there is no quantitative measurement of the accu-
racy of the representation. For time{frequency analysis to
be useful in a wide variety of real{world applications, some
method of measuring the bias and variance of the estimated
time{frequency spectrum is required. To meet this require-
ment, we present a statistical spectral estimation method
for nonstationary signals. The method is based on a time{
varying �lter formulation for positive TFDs, as discussed
in [12]. We solve for the eigenvectors which diagonalize the
nonstationary spectral generating function. These eigenvec-
tors are maximally concentrated (and doubly{orthogonal)

1Throughout the analysis that follows, we use integral formu-
lations of the various operations. The extension to the discrete,
�nite case is straightforward and not presented here. Integrals
with no limits are over the entire domain of support of the in-
tegrand. The corresponding summations in the discrete case are
then over the length of the corresponding vectors.



in time{frequency. We then derive a multitaper estimation
procedure to solve for the time{frequency spectrum. We
also present bias and variance measures for the estimated
time{frequency spectrum.

2. INTEGRAL EQUATION FOR A

TIME{FREQUENCY SPECTRUM

As is the case in stationary spectral estimation, a rigorous
approach to time{frequency spectral estimation should be
based upon the integral formulation underlying the gener-
ation of nonstationary signals. The formulation used here
is a straightforward extension of the spectral representation
theorem for stationary processes [14], and is equivalent to
a linear time{varying (LTV) �lter model. De�ne the signal
s(t) as the output of a white-noise-driven LTV �lter:

s(t) =

Z
h(t; � )e(�)d�: (4)

e(t) is bandlimited Gaussian white noise with bandwidth
much greater than that of the �lter h(t; �):

e(t) =

Z
ej!tdZ(!): (5)

dZ(!) is an orthogonal process with unit variance. The
signal can then be written as:

s(t) =

Z
H(t; !)ej!tdZ(!); (6)

whereH(t; !) is de�ned as the Fourier transform of h(t; t � �)
[12]. The time{frequency spectrum is de�ned by:

P (t; !) = jH(t; !)j2: (7)

This formulation for a time{frequency spectrum is of the
same general form as Priestley's evolutionary spectrum [14].
However, we do not require that H(t; !) be slowly{varying.
This form for P (t; !) also satis�es the stochastic equivalent
of the time and frequency marginals (equations 2{3); the
relationship between the above time{varying spectrum and
positive TFDs is discussed in [12].

Given a signal s(t), we want to estimate P (t; !); how-
ever, direct inversion of equation 6 is impossible. We can
gain some idea of the time{varying frequency content of s(t)
by computing the short-time Fourier transform (STFT):

Ss(t; !) =

Z
s(�)g(t� �)e�j!�d�; (8)

where g(t) is a rectangular window of length T . The re-
lationship between the STFT and H(t; !) is obtained by
replacing s(t) by its time{frequency spectral formulation:

Ss(t; !) =

Z Z
H(�; �)g(t � �)e�j(!��)�dZ(�)d�: (9)

To solve for the time-varying spectrum H(�; �), we need to
invert the STFT operator g(t � �)e�j!� . This inversion is
an inherently ill-posed problem. Instead, we approximate
the inverse solution by regularizing it to some region R(t; !)

in the time{frequency plane, much as Thomson regularized
the spectral inversion to a bandwidth W in his multitaper
approach [17]. For simplicity throughout, we will de�ne
R(t; !) to be a square region of time{frequency of dimen-
sion �T � �W ; however, the results readily generalize to
arbitrary regions R(t; !).

In the case of spectral estimation, the operator is square
and Toeplitz; its regularized inverse is found through an
eigenvector decomposition. Such is not the case in the time{
frequency problem; the STFT operator is neither full rank
nor square. To diagonalize it, we apply a Singular Value
Decomposition, �nding the left and right eigenvectors u(�)
and V (t; !) and the associated eigen (singular) values �:

g(t� �)e�j!� =
X
k

�kuk(�)V
�

k (t; !): (10)

The eigenvectors u(� ) and V (t; !) form an STFT pair:

V (t; !) =

Z
u(�)g(t� �)e�j!�d� (11)

The SVD relationship between u(�) and V (t; !) is obtained
by applying the STFT operator to V (t; !), computing the
integrals only over �T ��W :

�u(�) =

Z
�T

Z
�W

V (t; !)g(t� �)ej!�d!dt (12)

The inverse STFT computed over all (t; !) also holds. This
equation can be reduced to a standard eigenvector equation
by substituting for V (t; !):

�u(�) =

Z
�T

Z
�W

Z
u(s)g(t � s)g(t� �)ej!(��s)dsd!dt

(13)
The integral in ! reduces to a sinc function, or for the dis-
crete case, Dirichlet's kernel. The integral in t can be easily
computed over the two rectangular windows, the result of
which for convenience we de�ne by:

f(�; s) =

Z
�T

g(t� s)g(t� �)dt (14)

The eigenvalue equation for u(�) is then:

�u(�) =

Z
2�W sinc(�W (� � s))f(�; s)u(s)ds (15)

We can then solve for u(�) using standard eigenvector so-
lution methods. Figure 1 plots the �rst 20 eigenvalues for
this equation with T = 256, �T = 128, and �W = 6=256,
so that �T�W = 3. Figure 2 illustrates the �rst 4 eigen-
vectors for the same values of �T and �W . Note that the
uk(�) are of length T + �T , as determined by the region
of support of f(�; s) in equation 15. This increase in length
beyond T is a result of the convolution in time inherent in
the STFT.

There are two extremely important properties of these
eigenvectors for the time{frequency spectral estimation prob-
lem. These properties are obvious results of diagonaliz-
ing the STFT operator over a �nite region of the time{
frequency plane. First, the �rst left eigenvector u1 maxi-
mizes a time{frequency energy concentration measure

u1(�) = argumax

Z
�T

Z
�W

jSu(t; !)j2 d!dt (16)
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Figure 1: First 20 eigenvalues of the STFT kernel for
�T�W = 3.
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Figure 2: First 4 eigenvectors of the STFT kernel for
�T�W = 3.

over the space of unit{energy functions. In other words,
the �rst right eigenvector V1(t; !), the STFT of the �rst
left eigenvector u1(�), has the greatest proportion of en-
ergy in �T � �W (more generally, in R) for any STFT.
The second eigenvector maximizes the energy in a subspace
orthogonal to the �rst, and so on. It is straightforward
to show that maximization of this integral reduces to the
eigenequation for u(�). This time{frequency concentration
property is akin to the frequency concentration property of
the prolate spheroidal waveforms (or the prolate spheroidal
sequences, in the discrete case) [15]. The second important
property, again similar to the Slepian functions, is a double{
orthogonality property. Since the uk(� ) are orthonormal
functions on the real line, the Vk(t; !) are orthonormal on
the entire time{frequency plane. In addition, the Vk(t; !)
are also orthogonal over �T��W . This orthogonality is to
be expected, given the maximization of the time{frequency
concentration measure. The Slepian functions, by contrast,
are orthonormal on the real line and orthogonal on the inter-
valW . Looking ahead, it is this orthogonality on �T��W
that will let us construct a regularized estimate of the time{
frequency spectrum, just as the orthogonality of the Slepian
functions on W provide the basis for Thomson's multitaper
spectral estimation method.

3. EIGENESTIMATES

We now want to estimateH(t; !) regularized to �T ��W .
Following Thomson's approach, we form a Fourier{Bessel
expansion of H(t; !) over the rectangular region �T ��W
around (t; !):

Hk(t; !)
:
=

1p
�k

Z
�T

Z
�W

H(�; �)Vk(t � �; � � !)dZ(�)d�:

(17)
Hk is thus a direct, but unobservable, projection of H(t; !)
onto �T ��W .

We next form an estimate of these expansion coe�cients
using the STFT. We have from above that the STFT of s(t)
is given by:

Ss(t; !) =

Z Z
H(�; �)g(t� �)e�j(!��)�dZ(�)d�: (18)

Inserting the STFT Sg(t; !) for the rectangular window g(t)
gives:

Ss(t; !) =

Z Z Z
H(�; �)Sg(t� �; �)

e�j(!��+�)�+j�td�dZ(�)d�: (19)

In this formulation, H(�; �) is the time{varying envelope
of a complex exponential ej�� , and as such is relatively
smooth. Since g(t) and Sg(t; !) are also smooth, the in-
tegral in � will be approximately zero when the argument
of the complex exponential is nonzero. This condition holds
when � = � � !, and equation 19 reduces to:

Ss(t; !) =

Z Z
H(�; �)Sg(t� �; � � !)ej(��!)tdZ(�)d�:

(20)
It follows (with a change in notation) that the STFT of s(t)
computed with uk(�) is

Sk(t; !) =

Z Z
H(�; �)Vk(t� �; � � !)ej(��!)tdZ(�)d�;

(21)
i.e., the kth eigenspectrum Sk(t; !) is a projection ofH(t; !)
onto the kth right eigenvector Vk(t; !), estimating Hk(t; !)
over �T � �W . When s(t) is a stationary white noise
process, it follows that

E[jSk(t; !)j2] = jH(t; !)j2 = P (t; !): (22)

Thus, the individual eigenspectra are direct estimates of
P (t; !), and are unbiased when the spectrum is white.

Next, we form an estimate of H(t; !) over �T � �W
using a Fourier{Bessel series:

Ĥ(�t; �!; t; !) =

KX
k=1

Vk(�t� t; �! � !)
Hk(t; !)

�k
; (23)

where K � �T�W . Choosing �T�W too small will re-
sult in estimates with poor bias and variance properties.
The magnitude{square of Ĥ(�t; �!; t; !) yields our estimate
of P (t; !) over �T � �W . This estimate is a �2 random
variable with two degrees of freedom for frequencies other



than DC or Nyquist. As such, its variance is P 2(t; !). To
reduce the variance, we average the estimate over �T��W ,
making use of the orthogonality of Vk(t; !) on this region:

P̂ (t; !) =
1

�T�W

Z
�T

Z
�W

��Ĥ(�t; �!; t; !)
��2 d�td�!

=
1

�T�W

KX
k=1

jSk(t; !)j2
�k

: (24)

Averaging K \eigenspectrograms" results in a �2 random
variable with 2K degrees of freedom; the variance of this
estimate is then P 2(t; !)=K. If we choose �T to be a �xed
proportion of the window length T , then this estimator is
consistent for �xed �W .

While the individual eigenspectrograms, and hence, their
sum, are unbiased for white noise, there will be bias in
the �nal estimate due to leakage from the time{frequency
smoothing window. The expected value of spectrograms
for estimating a time{frequency spectrum has been derived
previously [13]. Using those results, it follows that the ex-
pected value for the multitaper time{frequency spectrum
is:

E[P̂ (t; !)] =

Z Z
P (t � �; ! � �)

KX
k=1

Wk(�; �)

�k
d�d�; (25)

where Wk(�; �) is the Wigner distribution of the kth left
eigenvector uk(�). Since the eigenvectors are localized to
�T � �W , their Wigner distributions will likewise be lo-
calized. Note, however, that concentration of the Wigner
distribution of the eigenvectors was not a factor in the
derivation; see [6] for a discussion of that topic. Using such
Wigner{concentrated eigenvectors would produce a multi-
taper estimate with minimum broadband bias.

4. CONCLUSIONS

We have presented a multitaper method of estimating time{
varying spectra. The methodology follows that used by
Thomson in his seminal 1982 paper [17], extended through-
out to the time{frequency case. Speci�cally, we used a
family of orthonormal windows whose corresponding short{
time Fourier transforms are doubly orthogonal and maxi-
mally concentrated in time{frequency. The multitaper es-
timate approximately solves the integral equation for time{
frequency spectra, providing a local least squares solution.
Expressions for computing the bias and variance are pro-
vided; the multitaper estimate is also consistent for �xed
bandwidth resolution. This solution to the problem of es-
timating time{varying spectra is computationally e�cient,
easily automated, and, most importantly, provides a means
of quantifying the accuracy and stability of the estimate.
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