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ABSTRACT

Most of the HO blind source separation methods
developed this last decade aim at blindly separating
statistically independent sources, assumed stationary and
ergodic. Nevertheless, in many situations such as in
radiocommunications, the sources are non stationary and
very often (quasi)-cyclostationary (digital modulations). In
these contexts, it is important to wonder if the performance
of these HO blind source separation methods may be
affected by the potential non stationarity of the sources.
The purpose of this paper is to bring some answers to this
question through the behaviour analysis of the empirical
fourth-order cumulant estimators in the presence of
(quasi)-cyclostationary sources.

1. INTRODUCTION

 Since more than a decade, the HO blind source
separation methods have been strongly developed [1-3].
These methods aim at blindly separating several
statistically independent sources, assumed stationary and
ergodic. Under these assumptions, the separators presented
in [1-3] have been shown to be very powerful in many
situations borrowed from the radiocommunications [4-8]
and the radar [8] field. Nevertheless, in many situations
such as in digital radiocommunications, the sources are
non stationary and more precisely (quasi)-cyclostationary.
In these contexts, it becomes important to wonder if the
performance of the developed HO blind source separation
methods [1-3] may be modified by the potential non
stationarity of the sources, which appears explicitely at the
processing level as soon as the sources are oversampled.
The purpose of the paper is to bring some answers to the
previous question through the behaviour analysis of the
empirical fourth-order cumulants estimators in the
presence of (quasi)-cyclostationary sources.

2. HYPOTHESIS AND PROBLEM FORMULATION

Consider an array of N Narrow-Band (NB) sensors and
let us call x(t) the vector of the complex envelopes of the

signals present at time t at the output of the sensors. Each
sensor is assumed to receive a noisy mixtures of P zero-
mean, (quasi)-cyclostationary and NB independent
sources. Under these assumptions, the observation vector
x(t) can be written as

x(t) = ∑
P

i = 1

 mi(t) e
j(∆ωit + φi) ai + b(t)  =∆  A m(t) + b(t)  (2.1)

where b(t) is the noise vector, assumed zero-mean,
stationary, Gaussian and spatially white, mi(t), ∆ωi, φi and
ai correspond to the complex envelope, the carrier residu,
the phase and the steering vector of the source i, m(t) is the
vector which components are the signals mi(t)exp[j(∆ωit +
φi)] and A is the (N x P) matrix which columns are the
vectors ai.

Under the previous assumptions, the correlation
matrices of the observations, Rx(t) =

∆  [x(t)x(t)†] and Cx(t)
=∆  E[x(t)x(t)T], can be written as

 Rx(t)  =  A Rm(t) A† + η2 I   (2.2)

 Cx(t)  =  A Cm(t) AT   (2.3)

where † means transpose and complex conjugate, T means
transpose, η2 is the mean power of the noise per sensor, I
is the identity matrix and Rm(t) =∆  E[m(t)m(t)†] and Cm(t)
=
∆

  E[m(t)m(t)T] are the first and second correlation matrix
of the vector m(t). The fourth-order statistics of the
observations are characterized by the quadricovariance
Qx(t), which elements, Qx(i, j, k, l)(t) =∆  Cum(xi(t), xj(t)* ,
xk(t)* , xl(t)), are the fourth-order cumulants of the vector
x(t) and which is defined by

Qx(t)  = (A ⊗A*)Qm(t)(A ⊗A*)†    (2.4)

where Qm(t) is the quadricovariance of the vector m(t) and
where ⊗ corresponds to the Kronecker product.

Under the previous assumptions, although in the
presence of (quasi)-cyclostationary sources it may be
useful to use Polyperiodic (PP) and Widely Linear
structure of separation [9], the problem of source



separation we address in this paper is to blindly implement
a (N x P) Linear and Time Invariant source separator,W,
outputing at time t the (P x 1) vector y(t) =

∆  W†x(t),
corresponding, to within a diagonal Λ and a permutation
matrix Π, to the best estimate of the vector m(t).

3. BLIND SEPARATION OF (QUASI)-
CYCLOSTATIONARY SOURCES

3.1 Possible Philosophies

For (quasi)-cyclostationary observations, the matrices
(2.2) et (2.3), PP, have a Fourier serial expansion showing
off the cyclic frequencies of the observations. The
exploitation of the information contained in all the cyclic
frequencies of the observations for the blind separation of
(quasi)-cyclostationaty sources may be very useful in some
situations as it has been shown in [10]. Nevertheless, for
particular reasons such as the complexity of the
implementation, on may prefer to still implement the
classical HO blind methods of source separation [1-3] even
for (quasi)-cyclostationary sources, which is the choice
done in this paper.

In (quasi)-cyclostationary contexts, these classical
methods aim at exploiting the information contained in the
zero cyclic frequency of the matrices Rx(t) and Qx(t), i.e.
in the temporal means Rx  =

∆  <Rx(t)> and Qx  =
∆  <Qx(t)>

of the matrices Rx(t) and Qx(t) respectively. The matrices
Rx and Qx are defined by (2.2) and (2.4) respectively,
where Rm(t) and Qm(t) are replaced by their temporal
mean noted Rm and Qm respectively. Then, it becomes
obvious that the temporal mean operation preserves the
algebraic structure of Rx(t) and Qx(t) and the second and
fourth-order statistical independence of the sources in
particular (Rm is still diagonal and the non zero elements
of Qm are still the coefficients Qm[i, i, i, i], 1 ≤ i ≤ P).

3.2 Statistics estimation

It is well-known that for zero-mean, stationary and
ergodic observations, the empirical estimators of the
second and fourth-order cumulant of these observations
provide asymptotically unbiaised estimates of the latter,
which variance tends to zero as the observation time
increases. However, for (quasi)-cyclostationary and cyclo-
ergodic observations, one may wonder if these empirical
estimators still generate asymptotically unbiaised estimates
of the temporal means of the second and fourth-order
observations statistics. The answer to this question is
obviously positive for the second order statistics but is
generally negative for the fourth-order ones. To show this,
let us write the expression of Qx[i, j, k, l], given by

 Qx(i, j, k, l)  =  Mx
0(i, j, k, l)  − <Rx(i, j)(t) Rx(l, k)(t)>

− <Rx(i, k)(t) Rx(l, j)(t)> − <Cx(i, l)(t) Cx(j, k)(t)*> (3.1)

where Mx
0(i, j, k, l)   =

∆  <E[xi(t) xj(t)*xk(t)*xl(t)]>, Rx(i,
j)(t) =

∆  E[xi(t)xj(t)*], Cx(i, j)(t) =
∆  E[xi(t)xj(t)]. Noting F(α)

and G(α) the Fourier Transforms of two arbitrary
functions f(t) and g(t), we have the following result

   <f(t) g(t)> = [F(α)∗G(α)]α=0  = ∫α F(α)G(−α) dα (3.2)

where ∗ is the convolution product. Then, using (3.2) into
(3.1) and the fact that Rx(t) and Cx(t), PP, have a Fourier
serial expansion, we obtain the expression (3.3) given by

 Qx(i, j, k, l) = Mx
0(i, j, k, l)  −  ∑

α
  Rx

α(i, j)  R x
−α(l, k)  

     −  ∑
α

  Rx
α(i, k)  R x

−α(l, j)   −  ∑
β

  Cx
β(i, l)  Cx

β(j, k) * (3.3)

where Rx
α(i, j)  and Cx

β(i, j)  are the coefficients associated
to the cyclic frequencies α and β respectively in the
Fourier serial expansion of Rx(i, j)(t) and Cx(i, j)(t). This
expression has also be obtained in [11] in an other context.
On the other hand, the empirical estimators of the fourth-
order cumulants of the observations asymptotically
generate an apparent cumulant temporal mean, noted
Qxa(i, j, k, l) and given by

  Qxa(i, j, k, l)  =∆  Mx
0(i, j, k, l)  − Rx

0(i, j)  Rx
0(l, k)  

              − Rx
0(i, k)  Rx

0(l, j)  − Cx
0(i, l)  Cx

0(j, k) *    (3.4)

Using (3.3) into (3.4) we obtain a new expression of Qxa(i,
j, k, l), given by

    Qxa(i, j, k, l) = Qx(i, j, k, l)  + ∑
α≠0

  Rx
α(i, j)  R x

−α(l, k)  

   + ∑
α≠0

  Rx
α(i, k)  R x

−α(l, j)   + ∑
β≠0

  Cx
β(i, l)  Cx

β(j, k) * (3.5)

This expression shows that Qxa(i, j, k, l) = Qx(i, j, k, l)
only for observations having no energy at non zero cyclic
frequencies, which is in particular the case for stationary
observations (which complex envelope is necessarily
second order non circular) but which is also the case for
the complex envelope of digital modulations sampled at
the symbol rate (which may remain non circular).
However, in the general case of oversampled (quasi)-
cyclostationary signals, Qxa(i, j, k, l) ≠ Qx(i, j, k, l) and the
empirical fourth-order cumulant estimators generate a
modified temporal mean of the fourth-order cumulants,
which may induces catastrophic results at the output of the
HO blind separators as it will be shown in the following.

3.3 HO blind source separation methods

Let us briefly recall that the HO blind source
separators presented in [1-3] aim at separating the received



sources from the blind identification of their steering
vectors. This identification requires the prewhitening of
the data, aiming at orthonormalizing the sources steering
vectors so as to search for the latter through a unitary
matrix U. If we note z(t) the whitened observation vector,
the matrix U is chosen in [1-3] so as to optimize a contrast
function, depending on the chosen method and
theoretically function of the Qz elements, where Qz is the
temporal mean of the quadricovariance of z(t). However,
in practice, taking into account the previous results, the
contrast function which is optimized by the separators [1-
3] is not a function of the Qz elements but is a function of
the Qza elements, where Qza is the apparent temporal
mean of the quadricovariance of z(t), which elements are
defined by (3.5) where the indice x is replaced by z. The
apparent temporal averaging operation keeps the
multilinearity property and we can write

Qz(a)  = (A ’⊗A ’*)Qm’(a)(A ’⊗A ’*)†    (3.6)

where A’ is the (P x P) unitary matrix of the whitened
sources steering vectors and where Qm’ and Qm’a
correspond to the true and apparent temporal mean of the
quadricovariance of m’(t) respectively, the latter
corresponding to the vector which components are the
signals mi(t)exp[j(∆ωit + φi)], 1 ≤ i ≤ P, after a
normalization. Thus, the performance of the separators [1-
3] in (quasi)-cyclostationary contexts are directly
dependent on the matrix Qm'a structure and more precisely
on the values of the elements Qm'a(i, j, k, l), such that (i, j,
k, l) ≠ (i, i, i, i), with respect to the Qm'a(i, i, i, i)’s.

4. Qm’a STRUCTURE ANALYSIS

4.1 General case

In the general case of P (quasi)-cyclostationary and
independent sources, the matrices Qm' and Qm'a are (P2 x
P2) matrices which contain P4 elements. However, if the
only non zero elements of the matrix Qm' are the P
elements Qm’(i, i, i, i), 1 ≤ i ≤ P, it is not necessarily the
case for the matrix Qm'a which elements Qm'a(i, i, j, j),
Qm'a(i, j, i, j) and Qm'a(i, j, j, i) with i ≠ j, 1 ≤ i, j ≤ P, may
also be non zero, in addition to the elements Qm'a(i, i, i, i),
1 ≤ i ≤ P. Taking into account the symetries of the matrix
Qm'a, we find that Qm'a(i, i, j, j) = Qm'a(i, j, i, j) and the
analysis of the potential non nullity of the Qm'a elements
can be deduced from the analysis of the elements Qm'a(i, i,
i, i), Qm'a(i, i, j, j) and Qm'a(i, j, j, i), with i ≠ j  (1  ≤  i, j  ≤
P), given from (3.5), by

 Qm'a(i, i, i, i)   =   Qm'(i, i, i, i)    + (4.1)

    2 ∑
α≠0

  Rm'
α (i, i)  R m'

−α(i, i)   + ∑
β≠0

  Cm'
β (i, i)  Cm'

β (i, i) *

 Qm'a(i, i, j, j)   =   ∑
α≠0

  Rm'
α (i, i)  R m'

−α(j, j)    (4.2)

 Qm'a(i, j, j, i)   =   ∑
β≠0

  Cm'
β (i, i)  Cm'

β (j, j) *    (4.3)

where Rm'
α (i, j) and Cm'

β (i, j) are the coefficients associated
to the cyclic frequencies α and β respectively in the
Fourier serial expansion of the element (i, j) of the first
and second correlation matrix of m’(t) respectively.

The expressions (4.1) to (4.3) show that in the general
case of (quasi)-cyclostationary sources, the empirical
fourth-order cumulant estimators may modify both the
autocumulant temporal mean and the fourth order
correlation of the sources, which, although statistically
independent, may become apparently fourth-order
correlated to each other [12]. Note that for second order
circular sources such as the M-PSK (M > 2) modulated
sources, the expression (4.3) is zero and only the cross
terms (4.2) may be non zero. On the other hand, the
expressions (4.2) and (4.3) show that for sources which do
not share any non zero cyclic frequencies, (4.2) and (4.3)
are zero, which means that a necessary condition to obtain
an apparent fourth-order correlation between two
statistically independent sources is that these two sources
have common non zero cyclic frequencies.

4.2 Linearly modulated sources case

To analyse more precisely the conditions under which
we obtain an apparent fourth-order correlation between
two independent sources, we consider in this section the
case of linearly modulated sources, which normalized
complex signals are given by

mi'(t)  = ∑
n

   ain  vi(t − ti  − nTi) e
j(∆ωit + φi)   (4.4)

where, for each source i, 1 ≤ i  ≤ P, the associated symbols ain
are i.i.d random variables, independent of the symbols ajn
for j ≠ i and where ti, Ti and vi(t) correspond to the initial
time, the symbol duration and the real-valued pulse
function of the source i such that <E[|mi'(t) |2]> = 1. Under
these assumptions, the coefficients Rm'

α (i, i) and Cm'
β (i, i)

appearing in (4.1) to (4.3) are given by

Rm'
α (i, i)  =  E[|ai|

2]  ∑
k

  Riv
α  δ(α − k/Ti)   (4.5)

Cm'
β (i, i) = E[ai

2]  ∑
k

  R iv
β− 2∆fι δ(β−2∆fi−k/Ti) e

j2φi (4.6)

where ∆ωi  =
∆  2π ∆fi, δ(.) is the Kronecker symbol and

where Riv
α is defined by

Riv
α    =

∆   < ∑
n

  vi(t − ti  − nTi)
2 exp(− j2π α t) >   (4.7)



In the particular case of non filtered modulations, for
which the pulse function vi(t) is equal to 1/E[|ai|

2]1/2 si 0 ≤
t ≤ Ti and zero elsewhere, the coefficient Riv

α is zero for the
non zero α and equal to 1/ E[|ai|2] for α = 0, which implys
that (4.5) and (4.6) take the form

Rm’
α (i, i)  =  δ(α)   (4.8)

Cm’
β (i, i) = (E[ai

2] / E[|ai|2])  δ(β−2∆fi)  e
j2φi  (4.9)

Then, using (4.8) and (4.9) into (4.1) to (4.3), we obtain

Qm’a(i, i, i, i) = ci + [1−δ(∆fi)] |E[ai
2]|2/ E[|ai|

2]2 (4.10) 

Qm’a(i, i, j, j)   =  0 (4.11)

Qm’a(i, j, j, i) = [1− δ(∆fi)] [1− δ(∆fj)] δ(∆fi - ∆fj) x

        ej2(φi − φj)  E[ai
2] E[aj

2]* / E[|ai|
2] E[|aj|

2]  (4.12)

 ci  =
∆   cum[ai, ai

*, ai
*, ai] / E[|ai|

2]2 (4.13) 

The expression (4.10) shows that Qm’a(i, i, i, i) ≠ ci for
sources i which are second order non circular with a non
zero carrier residu. Besides, the expression (4.12) shows
that two independent sources, linearly modulated, non
filtered, second order non circular and having the same
non zero carrier residu become apparently fourth-order
correlated. In particular, under the latter conditions, two
BPSK sources i and j are such that ci = −2, Qm’a(i, i, i, i) =
−1 and Qm’a(i, j, j, i) = ej2(φi − φj), which gives an apparent
fourth-order correlation coefficient, ρ4a(i, j, j, i), with a
maximal modulus and equal to one, where ρ4a(i, j, j, i) is
the ratio between Qm’a(i, j, j, i) and the product of the
square roots of Qm’a(i, i, i, i) and Qm’a(j, j, j, j). In these
conditions, the two sources, being apparently strongly
fourth-order correlated [12], cannot be separated by the
separators [1-3], despite of their independence, as it is
shown in the next section.    

5. SEPARATORS PERFORMANCE

We expect poor performance at the output of the
separators [1-3] for high values of the quantities |ρ4a(i, j, j,
i)| and relatively unaffected performance for low values of
|ρ4a(i, j, j, i)|. The previous results are illustrated at figure
1 which shows, for two BPSK sources which pulse
function is a ½ Nyquist filter, the SINRM (Maximal Signal
to Interference plus Noise Ratio) [4-5] of the sources
(averaged over 200 realizations) at the output of the JADE
separator [1], as a function of the number of independent
noise snapshots K, for sources which are oversampled by a
10 factor and having the same SNR. Note, under the
previous assumption, the non separation of the sources,
even independent, and the decreasing convergence speed
as (∆fi - ∆fj) decreases.

6. CONCLUSION

The use of the empirical fourth-order cumulant
estimators in (quasi)-cyclostationary contexts may
generate, in some cases, the non separation, by the
separators [1-3], of non Gaussian sources despite of their
statistical independence. This result is due to the fact that
the information contained in the non zero cyclic
frequencies of the sources are not taken into account in the
statistics estimation, which shows all the importance of the
fourth-order cumulant estimator choice.
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