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ABSTRACT
This paper presents two time-scale pitch-scale modification
techniques to be used in speech synthesis systems. They have
been applied to Microsoft’s Whistler system, which is based on
concatenative synthesis. Both methods are based on a source-
filter model, one of them using LPC parameters and the other
one using cepstral parameters. The proposed methods achieve
high quality prosody modification, retain the characteristics of
the donor speaker, allow for spectral manipulation (to reduce
spectral discontinuities at unit boundaries), yield compact
acoustic inventories and improved voiced fricatives.

1. INTRODUCTION

Although Text-to-Speech (TTS) systems today have achieved a
high level of intelligibility, their unnatural prosody and synthesis
voice quality still prevent them from being widely deployed in
man-machine communication. In addition, the process of
building a new synthesis voice often is highly labor-intensive.

There are two main methods used for speech synthesis: formant
synthesis [1] and concatenative synthesis [9]. Generally, formant
synthesizers use a set of rules to generate speech. While these
systems can achieve high intelligibility, their naturalness is
typically low, since it is very difficult to accurately describe the
process of speech generation in a set of rules. In recent years,
data-driven approaches such as concatenative synthesis [9][14]
have achieved a higher degree of naturalness. While these speech
units are often tediously extracted by human experts, there are
some automatic ways of generating them [2][3][5]. In most cases,
the speech units have to be synthesized with a different prosody
than that of the original database.

A very popular technique of doing prosodic modification of a
speech unit is the so-called Time-Domain Pitch-Synchronous
Overlap-and-Add (TD-PSOLA) [9]. This approach can perform
prosody modification on a speech segment with excellent quality,
and the original speaker’s characteristics are retained. On the
other hand, it cannot do any spectral modification, which is often
needed to smooth out spectral discontinuities at unit boundaries,
because it operates in the time domain. Moreover, for many
practical applications the acoustic inventory needs to be
compressed, which can lead to a degradation in the final quality.

Another popular technique uses a source-filter model [14], where
the filter is an LPC filter estimated from the speech unit, and the
excitation is a parameterized pulse generator. This source-filter
approach allows for spectral smoothing across unit boundaries by
smoothing the LPC coefficients -- actually equivalent parameters

sets that can be manipulated better such as reflection coefficients,
or Line Spectral Pairs (LSP). However, since the pulse generator
has not been estimated from the original speech unit, the
generated speech does not resemble the original speaker.

The objective of this paper is to derive a method that can (a)
retain the characteristics of original speaker after prosodic
manipulation, (b) allow for spectral manipulation (c) be compact
and (d) generate improved voiced fricatives. In this paper we
describe some of the techniques we have experimented with to
improve the speech synthesis quality of Microsoft’s Whistler
(Whisper Highly Intelligent Stochastic TaLkER). An early
implementation of the Whistler TTS system [3] can be
downloaded from Microsoft Research’s web site [8].

This paper is organized as follows. In Section 2 we discuss
source-filter models for speech synthesis. In Section 3 we then
describe how to extract pitch and epochs from the input speech.
Section 4 deals with our proposed LPC-based source-filter and
Section 5 presents another source-filter model that is based on
cepstrum. Finally we summarize our major findings and outline
our future work.

2. SOURCE-FILTER MODELS
The traditional source-filter model consists of an excitation
followed by a linear time-varying filter. The excitation can be
white Gaussian noise for unvoiced sounds or an impulse train for
voiced sounds (See Fig. 1).

To obtain natural sounding speech, we need to estimate both the
excitation and the filter from input speech. In synthesis, we can
modify the prosody by changing the spacing between impulses.

To estimate the excitation from input speech, we need to
determine first the regions where the signal is voiced or
unvoiced, and the epochs or exact location of the impulses for
the voiced regions (see Section 3). Section 4 will describe how to
estimate the time-varying filter such that the resynthesized signal
is as close as possible to the original signal.

Figure 1. Basic source-filter speech production model.
An impulse train is used as the source for voiced sounds
and white Gaussian random noise as source for unvoiced
sounds, both followed by a time-varying filter.

The mixed excitation model of Fig. 2 improves on the previous
model, since it is well known that voiced fricatives contain some
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amount of aspiration noise in addition to the voiced component.
This model will be used in Section 5.

Figure 2. Mixed excitation speech production model.
For unvoiced sounds, Gaussian random noise is filtered
by a time-varying filter. For voiced sounds, the signal is
the sum of a voiced and an unvoiced components.

Prosody modification implies pitch-scale and time-scale
modification of the segment simultaneously. The time varying
filter H(f,t) is estimated at times ti, which corresponds to the
input epochs for voiced speech and are arbitrary for unvoiced
speech. In synthesis, re-sampling of this filter is necessary at a

time sequence ,
it  different than that of analysis. This involves

computing a mapping )(,
ii tft = , that assigns an analysis epoch

to a synthesis epoch [10], and involves repeating or removing a
filter H(f,ti) for some pitch periods.

3. EPOCH EXTRACTION

Epoch extraction refers to the process of computing the glottal
closure instants (GCI). Traditionally, this is done by analyzing
the speech signal with a pitch tracker, which also classify
different regions of the input signal as either voiced and
unvoiced. In addition, we also investigated obtaining the epochs
from a laryngograph signal, which ended up being superior.

We implemented a pitch tracker similar to that described in [15],
and modified it to compute the epochs in addition to the pitch
period. This pitch tracker had a 10% voiced/unvoiced
classification error. We observed that the quality of the pitch-
scale time-scale modified signal using the methods described in
Sections 4 and 5, could be significantly degraded because of
those epoch errors. There are several types of possible errors:
epoch deletions and insertions and epoch inaccuracy. Epoch
deletions (i.e. a voiced region being classified as unvoiced)
resulted in rough speech when prosody modification was done.
Epoch insertions also resulted in severe distortions (i.e. when an
additional epoch was inserted in a voiced region, when an
unvoiced frame was repeated since it is being considered voiced).
Epoch inaccuracies, resulted in jitter and rough speech as well
when prosody modification was done.

In order to obtain a more accurate epoch sequence, we
investigated epoch extraction through an electroglotograph
(EGG) signal [7], also called laryngograph signal. This signal can
be recorded in one channel with the speech signal being in the
other channel of a stereo recording. Briefly, a laryngograph
signal can be obtained by placing two electrodes on the subject’s
larynx to capture the opening and closing of the vocal cords.
Using a laryngograph signal (see Fig. 3) to detect voicing is
much simpler because for unvoiced sounds this signal contains
almost no energy. Also, since the signal has an almost constant
power spectrum, it is much easier to detect periodicity.

3.1 Epoch Extraction from Laryngograph Signal

High quality epoch extraction can be achieved by performing
peak picking on the derivative of the laryngograph signal. In
practice, the derivative operation is accomplished by a first order

pre-emphasis filter 11][ −−= zzH α  with α being near 1 (0.95 is

a good choice).

We pre-processed the signal to filter out the low frequencies
(lower than 100 Hz) and high frequencies (higher than 4kHz).
This can be done with rectangular window filters that are quite
efficient and easy to implement. There is a significant amount of
energy outside this band that does not contribute to epoch
detection, yet it can complicate the process, as can be seen in Fig.
3, so this band-pass filtering is quite important.

Figure 3. Speech signal, laryngograph signal, and
extracted epochs corresponding to the word “city”.

The pre-emphasized signal exhibits peaks that are found by
thresholding. The quality of this epoch detector has been
evaluated on recordings from 2 female and 4 male speakers and
the voiced/unvoiced decision errors are lower than 1%. This is
definitely acceptable for our prosody modification algorithms.
The quality of prosody modification with the epochs computed
by this method vastly exceeded the quality achieved when the
standard pitch tracker was used on the original speech signal.

4. LPC-BASED FILTER MODEL

Analysis/resynthesis experiments conducted on a system like that
of Fig. 1, where the filter is an LPC filter, results in speech that is
unnatural and different than the original speech, especially for
voiced frames. The residual signal obtained through various LPC
estimation methods, including Levinson-Durbin, has a non-white
magnitude, and it can be understood without problems if listened
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to through speakers. This is possibly due to the fact that LPC
analysis models only poles, not zeroes, and because most LPC
estimation methods have been derived under the assumption of a
white noise excitation, and not a periodic excitation. Therefore
we decided to use the LPC filter for unvoiced segments only, for
which it produces satisfactory results.

For a TTS system, one needs to store a fairly large set of speech
segments and in practice these segments need to be compressed.
While we could have opted for using a standard speech
compression scheme to do this, we decided to investigate
schemes that would compress the speech in a way that integrates
well with the approach required to do prosody modification.

For 22kHz sampling rate, we estimated 20 LPC coefficients
through the Levinson-Durbin recursion (different estimation
techniques didn’t produce a noticeable improvement in quality),
which are transformed to LSP and quantized with 48 bits by
using split-VQ similarly to [12], but with 6 codebooks of 256
entries each.

4.1 Double-Filter Model for Voiced Speech

For voiced signals we used a cascade of an N-tap time-varying
FIR filter followed by a pth order LPC filter. The LPC filter is
estimated as described above for unvoiced signals (other than the
window was centered at the epochs). The objective in adding the
FIR filter is to retain the characteristics of the original signal.
Therefore the FIR filter is estimated in three steps.

First, let’s define the LPC-residual signal as ][nx , and a local

version of it centered at time m by ][][ nmxnxm += , where the

time instant for epoch i is mti = . We can create a windowed

version ][nym that can be computed as

     ][][][ nxnwny mLm =
where ][nwL can be a Hanning window

with zero padding for L < N  and L being defined as
     ),,min( 11 NttttL iiii −−= +−
i.e. the minimum of the adjacent pitch periods and N. The use of
a symmetric window makes perfect reconstruction impossible. In
addition, truncation can occur for pitch periods larger than N.
Nevertheless, it was empirically observed that this choice of FIR
filter ][nym resulted in no perceptual degradation in the

resynthesized signal when no prosody modification was done.

Second, ][nym  is expressed in the frequency domain by taking

the N-point FFT as:
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Finally, ][kYm  is quantized by sub-bands using delta-

quantization:
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where sub-band r contains the frequency bins k between lr and ur,

and ][kr
j∆  is the delta contribution from codeword j for the

frequency band r. We divided the spectrum into R sub-bands
with bandwidths approximating the mel-scale.

Since in our TTS system, we need to quantize each unit
independently of the others (i.e. we have no history), we also
need to quantize the first voiced frame directly. To do that we
created an equivalent sub-band quantization procedure.

For 22kHz sampling rate, a choice of N = 512 and R = 13  was
found to be reasonable. This representation can result in a
compact system.

4.2 Discussion

The quality of the synthetic speech generated by this model is
quite high, though there are several problems:

• Voiced fricatives can exhibit some buzziness when
stretched by a factor of 2 or more, because repeating the
FIR filter ignores the fact that at high frequencies the
energy is not totally periodic, and forcing it to be
periodic can lead to buzzy speech.

• Repeating and deleting frames does not yield smooth
waveforms and ideally one would like to interpolate
filters with time. We can interpolate the LSP
coefficients, but if we interpolate the time-varying FIR
filter, the unvoiced component present in every voiced
sound (though most prevalent in voiced fricatives) is
attenuated. This results in a more “muted” speech in
practice, and even in buzzy voiced fricatives.

• Because of the estimation method, the LPC vectors do
not evolve smoothly with time, and neither do the FIR
filter, which causes some spectral blurring if
interpolation is used.

5. CEPSTRUM-BASED FILTER MODEL

To address the problem caused by both LPC and FIR filters not
evolving smoothly with time, another filter technique is proposed
based on the pitch-synchronous real cepstrum.

If we define the input signal as ][nx , instead of the LPC-residual

signal as done in the previous section, we can proceed similarly
until the computation of ][kYm , which now represents the pitch-

synchronous short-time spectrum of the input signal.

We can then compute the pitch-synchronous real cepstrum
][ncm as:

     2/2/}][{log][ NnNkYIFFTnc mm <<−=
which allows us to decompose the original spectrum as

     ][][][ kZkYkY mmm =

with ][kYm  being computed from the real cepstrum as

     ]})[{exp(][ ncFFTkY mm =
and ][kZ m being the amplitude-normalized spectrum, which is

indeed whiter than a standard LPC residual.
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Many of the problems of the approach of Section 4.2 can be
solved by using a mixed-excitation model such as that described
in Fig. 2. This way we can modify the periodic and the aperiodic
components of a voiced sound independently. Estimation of the
voiced and unvoiced component could be done in a way inspired
by Waveform Interpolation methods [6], so that ][kZ m can be

decomposed as
     ][][][ kQkSkZ mmm +=
where the slowly varying component of the spectrum ][kSm ,

obtained by low-pass filtering ][kZ m with time m, represents the

voiced component. The rapidly changing component
][kQm represents the unvoiced component, which can be

characterized by its power spectrum.

One difference with the approach in [6] is that we use a Hanning
window instead of a rectangular window, which helps reduce the
variability present when pitch is changing rapidly. Another
difference is that here we filter the spectrum directly, and not a
length-normalized time signal. This way each frequency
component can be treated differently (for example we can use
different time constants for every frequency bin). We can also
neglect the unvoiced component that appears at very low
frequencies, which is an artifact of the window we use to
estimate the pitch synchronous spectrum.

This cepstrum vector ][ncm=c can then be converted into a

mel-scale through the use of the bilinear transform [11]:
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that has been successfully used in speech recognition. This
operation is equivalent to a matrix multiplication cLc )(  w α=
on the cepstrum, where the matrix L(α) depends on the warping
parameter α [13]. This transformation allows us to significantly
reduce the number of coefficients without a perceptual change in
quality. ][kSm  can also be transformed to a mel-scale by taking

the inverse FFT and then applying the bilinear transform.

Accuracy of epoch placement is important for this technique. A
deviation from the correct epoch location will result in a linear
phase shift, which in turn will reduce the time correlation of
frequency bins, especially at higher frequencies. This can result
in an overestimation of the noise component ][kQm , and

therefore more aspiration in the synthetic speech. Additionally,
there is typically a delay between the epochs found in the
laryngograph signal and the epochs in the original signal, due to
the time it takes the signal to travel from the larynx to the
microphone (in our recordings this averaged 20 samples at
22kHz sampling rate).

This system can also be compressed in a way similar to that
described in Section 4.1: cepstral coefficients can be
differentially quantized easily using split-VQ. This system allows
larger prosody manipulations than the LPC-based model.

6. SUMMARY
We have presented two techniques to do time-scale pitch-scale
modification for a speech synthesis systems. Both methods are

based on a source-filter model, one of them using LPC
parameters and the other one using cepstral parameters. The
proposed methods offer high-quality prosody-modification,
retain the characteristics of the donor speaker, allow for spectral
manipulation (to reduce spectral discontinuities at unit
boundaries) and yield compact acoustic inventories.
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