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ABSTRACT

This paper describes a new adaptive blind equalization algorithm
based on a truly IIR structure that enables the correction of ISI
over severely distorted channels. The recursive feedback filter is
in lattice form to allow an easy monitoring of the filter stability.
During blind training, the adaptation of the equalizer is carried out
via the usual stochastic gradient algorithm by minimizing the
Shtrom-Fan cost function, a CMA like functional robust to ill-
convergence. Once in steady state, the algorithm switches auto-
matically into a classical DFE structure adapted via the DD-
MMSE criterion. Simulation results show that this new equalizer
outperforms most of the traditional blind FIR equalizers.

I. INTRODUCTION

Several techniques have been devised to cope with channel distor-
tions in high speed data transmissions. One common solution is to
rely on the inverse filtering approach specifically dedicated to mit-
igate Inter Symbol Interferences (ISI) on band-limited digitally
modulated signals. This approach simply consists in providing the
traditional Maximum Likelihood receiver with a filter designed to
inverse in some manner the channel transfer function [1]. In con-
ventional modems, initial acquisition of the equalizer coefficients
is usually accomplished using learning sequences transmitted pe-
riodically in time. However, it is sometimes desirable to allow re-
ceivers to start up without the help of the transmitter. The equalizer
must resort only on the received samples and some mild assump-
tions on the input data to identify the channel.

Blind channel equalization (BCE) has received a lot of attention in
the literature starting with the pioneering work of Sato [2] (see [3]
for an extensive study of BCE). In this paper, we concentrate on
the class of the Bussbang-type equalizers based on the inverse fil-
tering approach. Bussbang equalizers operate on the received sig-
nal sampled at the baud rate through a transversal filter which
coefficients are adaptively adjusted to minimize an explicit or im-
plicit Higher Order Statistics cost function. Bussbang equalizers
are known to suffer from a slow convergence speed due to the use
of the stochastic gradient algorithm for adaptation and a potential
ill-convergence inherent to the multimodality of the HOS func-
tionals. Another major limitation of Bussbang algorithms lies on
their FIR structure that shows poor performance in highly distorted
channels.An attempt to overcome this limitation was recently pro-

posed by Labat et al. from the initial work of Macchi [5, 6]. During
blind training, the equalizer is composed of a recursive error pre-
diction filter followed by a transversal Constant Modulus Algo-
rithm (CMA) equalizer [4]. Once in steady state, the two filters are
put in reverse order to lead to the traditional Decision Feedback
Equalizer (DFE) adapted via the Decision Directed-MMSE crite-
rion. This algorithm is satisfactory in most situations but it shows
a functional weakness. The MMSE DFE equalizer separates the
channel into its minimum and maximum phase components while
the blind structure proposed in [6] equalizes the channel in ampli-
tude and phase. Thus, the equalizer exhibits a transition period to
compensate the influence of poles introduced by the whitening op-
eration, which may lead to instability.

In this paper, we propose another alternative based on a true IIR
structure that makes the equalizer able to cope with severely de-
graded channels when most of the traditional FIR equalizers fail.
Unlike most of the recursive blind equalizers recently proposed,
this equalizer integrates a direct and simple monitoring of the filter
stability. The adaptation of the equalizer coefficients is carried out
by minimizing the functional proposed by Shtrom-Fan [7] which
shows a better robustness to ill-convergence than the CMA cost
function. Once convergence is established, the equalizer switches
automatically to the DFE mode via the DD-MMSE criterion. The
structure includes an AGC and a second order PLL to deal with
amplitude and phase residuals.

The paper is organized as follows: Section II describes the struc-
ture of the proposed equalizer and formulates the stochastic gradi-
ent update equation both in blind and tracking mode. Section III
contains some computer simulation results and section IV presents
a discussion followed by the conclusion.

II. PROPOSED ALGORITHM

A - Equalizer structure

The introduction of poles in the equalizer transfer function gives
IIR filters a better ability to equalize severely distorted channels
than their FIR counterparts. However, adaptive IIR structures suf-
fer from some major drawbacks such as a slow convergence speed,
a possible ill-convergence and the potential instability of the recur-
sive part. A lot of attention has been dedicated in recent years to
overcome these limitations in the context of system identification
[8].



In particular, it was shown that the stability issue greatly depends
on the structure of the recursive part. The lattice form appears as
much more robust than the two other classical structures that are
the direct and the parallel forms. Moreover, while monitoring the
stability of direct form IIR filter is difficult and computationally
expensive, stability monitoring of lattice structure is simple and re-
quires almost no computation [9].

The equalizer proposed in this paper is derived from the structure
studied in [9]. It is composed of a transversal feedforward filter fol-
lowed by a feedback recursive lattice filter. Figure 1 depicts the
block diagram of the equalizer. Monitoring the stability requires
only to maintain the feedback coefficients below unity in module.
This condition guarantees BIBO stability of the filter only in
steady state. However, extensive simulations have shown that this
condition performs well also during adaptation. Due to its recur-
sive structure, the filter can be easily turned into a DFE filter sim-
ply by feeding back the decisions associated to the filter output.

Figure 1. Equalizer structure

B - Equalizer output

To start, define the following vectors

(1)

From the figure 1 and (1), the output of the equalizer is given by

(2)

where  is the input
vector and  the state vec-
tor of the lattice filter updated through the equation

(3)

where (4)
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C- Starting-up mode

The equalizer coefficients are adjusted to minimize the Shtrom-
Fan cost function [7] defined as
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with (7)

The corresponding stochastic gradient algorithm is given by
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with (9)

where (10)

The major difficulty to adaptively compute the equalizer coeffi-
cients lies in the complexity of the lattice feedback structure. As
proposed in [9], a solution is to split the derivation into two parts

(11)

where is the direct form associated with the lattice
filter (see [9] for the relation between the two forms). Using typical
results in complex derivation, the derivative of the output power of
the filter in (9) can be expressed as 
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It remains to differentiate the output of the equalizer with respect
to the real and the imaginary part of the equalizer coefficients. At
this stage, we apply the standard slow convergence property in dif-
ferentiation to obtain
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We now rely on the on-line approximation described in [9] which
gives from (13) and a simplification of the term  the fol-

lowing expression for the gradient (11)

(17)

where XA(n) is the state vector of the lattice filter with input y(n)
and  as defined above.

The computation of the vector SA(n) requires to update at each it-
eration N recursive filters. In this equalizer we use once again the
slow convergence assumption to simplify the algorithm replacing
SA(n) by the following vector

(18)

Finally, the stochastic gradient update equation during blind start-
up takes the general form

(19)

l (20)

where (21)

l (22)

l (23)

The output power is estimated according to

(24)

D - Commutation rule

After convergence, the algorithm is switched into a classical DFE
equalizer adapted via the DD-MMSE criterion. The commutation
rule is based on the estimated value of the Shtrom-Fan error and
the MSE error according to

(25)

(26)

where (27)

When one of these two parameters decreases below a determined
threshold, the equalizer switches into the DFE mode. In the same
way, if one of the parameters increases up to a another threshold,
the equalizer is switched back into the blind set-up.

E - Tracking mode

Once in steady state, the equalizer coefficients are updated to min-
imize the MSE cost function defined as follows

(28)

where  is the output of the decision device at time i. Following a
similar approach to that developed for the blind adaptation, we can
show that the updating equation in tracking mode is strictly identi-
cal to (17) simply taking

(29)

It is worth noting that the equalizer is able to work in DFE mode
even during blind setup. This mode shows better ability to con-
verge quickly but at the expense of some stability problems.

F - Equalizer constraining

The all-zero setting appears as a undesirable local minimum of the
Shtrom-Fan cost function. It is required to impose some constraint
on the updating equation in order to avoid convergence to this
unwanted stable minima. A common solution is to properly ini-
tialize setting all parameters to zero except for the last parameter
of the feedforward filter [10]. This solution works well in most
situations but fails for a distortions free channel, where the only
solution to the Shtrom Fan function is to cancel the equalizer out-
put. Another solution is to fix the central tap and update the
remaining coefficients. However, this solution appeared as too
constraining in simulation. For testing the equalizer, we used the
first solution. It remains to develop a constraining condition
adapted to the IIR structure.

III. COMPUTER SIMULATIONS

Simulation 1

This simulation intends to show the greater ability of the cascade
IIR equalizer to deal with severely distorted channels in compari-
son with traditional FIR equalizers. A channel is generally regard-
ed as severely distorted when its transfer function has one or
several zeros onto or near the unit circle. We refine this condition,
considering a channel as greatly distorted when the ZF equalizer
required to remove completely ISI extends over several tens of
symbols. The input data is an i.i.d. 16QAM sequence passed
through a channel distortion filter with transfer function
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The SNR is set to 30 dB. The cascade IIR equalizer has 10 taps in
the forward part and 5 taps in the feedback part. As depicted in fig-
ure 2, the equalization in ZF sense requires more than 100 coeffi-
cients. As a result, no FIR equalizer was able to converge in less
than 50000 symbol periods with a 60 taps filter. In the other hand,
the cascade IIR equalizer converged after 30000 iterations.

Figure 2. ZF equalizer for simulation 1

Simulation 2

We now compare the new equalizer and the traditional CMA
equalizer in a typical transmission scenario. Consider a pulse-am-
plitude modulated system using a raised cosine pulse limited with
roll off factor 0.2. The data input signal is an iid 16QAM. The
channel is a 2 rays multipath channel with impulse response

, with additive noise of SNR = 20 dB
and a frequency offset equal to 1/1000T. 

The received signal is low-pass filtered to remove out of band
noise and is sampled at the baud rate. The cascade IIR equalizer
has 10 taps in the forward part and 5 taps in the feedback part while
the CMA is 30 taps long. The parameters are adjusted to achieve a
maximum convergence speed for a reasonable residual ISI. Figure
3 depicts the output constellation of both equalizers after conver-
gence. It is clear that the new equalizer outperforms the CMA in
convergence speed and steady state performance.

Figure 3. Performance comparison

IV DISCUSSION AND CONCLUSION

In this paper, we used a cascade IIR structure to develop a truly
recursive blind algorithm able to cope with severely distorted
channels. This equalizer overcomes two of the major limitations
of IIR filters that are the ill-convergence and stability problems.
The ill-convergence is avoided using the Shtrom-Fan cost func-
tion which shares with the CMA functional the advantage of

being independent of the signal phase but with a much better
robustness to ill-convergence. This property was only discussed in
the case of FIR structures in [7]. The use of the Shtrom-Fan func-
tional into a recursive structure much more sensible to ill-conver-
gence than FIR filters tends to confirm this property. Another
important aspect of the new equalizer lies on the lattice structure
of the recursive filter. This structure allows to control in a simple
manner the stability of the equalizer, a recurrent problem in blind
IIR equalization. 

Simulations show that the cascade IIR equalizer outperforms most
of the traditional FIR equalizers in two aspects: first, it is able to
reduce ISI on severely distorted channels where FIR algorithms
fail. Secondly, the cascade IIR filter requires much less coeffi-
cients than FIR equalizers in order to inverse the minimum phase
part of the channel. Moreover, the truly recursive structure of the
cascade IIR equalizer makes possible to switch naturally to DFE
mode and even to work with a DFE setting during blind start-up.
From this point of view, the new algorithm is more coherent than
the SA-DFE recently proposed in [6]. Indeed, unlike the SA-DFE,
the cascade IIR filter converges directly to the DD-MMSE solu-
tion.

It remains to demonstrate properly the robustness of the new algo-
rithm. However, extensive simulations have shown the good
behavior of the new algorithm. Improvements are under study in
the field of convergence speed, stability monitoring and equalizer
constraining.
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