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ABSTRACT

A general approach to array-based blind copy and copy-
aided DF of structured communication signals is presented
that can substantially outperform conventional techniques,
by exploiting additional information about the structure of
the signals of interest to the reception system. The tech-
niques are derived from optimal parameter estimation con-
cepts that directly incorporate this additional information
into the waveform or parameter estimation strategy. The
resultant algorithms demonstrate strong theoretical, exper-
imental, and implementation advantages over conventional
techniques. Results are demonstrated for blind separation
and copy-aided DF of co-channel FM, CPFSK, DSB-AM,
and burst waveforms.

1. INTRODUCTION

The problem of detecting, copying, and localizing commu-
nication signals in dense interference environments is of in-
creasing importance to the defense community. The ex-
pansion of commercial and military broadcast, communi-
cations, and radar systems in the microwave bands has re-
sulted in severe spectral crowding over many frequencies.
At the same time, restrictions placed on modern signal col-
lection systems typically requires collection of signals over
broad geographical areas. As a consequence, these systems
must operate in environments containing large numbers of
unknown time and frequency coincident signals of interest
(SOIs), as well as strong deliberate and inadvertent inter-
ference.

Multielement antenna arrays have the potential to over-
come this problem, by exploiting the differing spatial coher-
ence of the signals impinging on the array due to the wave-
fronts arriving at distinct directions of arrival (DOAs).

In many applications, the number of antennas required
to separate the signals can be quite low, for example, M
antennas are typically sufficient to separate M overlapping
SOls, if the SOls are received at a sufficiently high power
above the interference in the channel.

Serious challenges still exist, however, with implementa-
tion of array-based signal collection systems. The numbers,
strengths and DOAs of the signals received by such systems
are typically unknown and time-varying over the collect in-
terval. Furthermore, the system must use blind techniques
that do not rely on the content of the SOIs to adapt the
array, since this information is typically not available to the
collection system. Lastly, conventional techniques that ex-
ploit only the spatial coherence of the SOIs require array
and noise calibration information that can be expensive or
impossible to obtain, and must detect and localize (DF)

all the emitters in the environment in order to copy and
recognize the signals of primary interest to the array.

This paper presents a general method for using the
known structure of communication signals to blindly extract
(copy) those signals from co-channel interference environ-
ments, and for providing improved DF of those signals. The
methodology is based on mazimum-likelihood (ML) parame-
ter estimation procedures, and is applicable to broad classes
of environments, processor structures, and signal modula-
tion formats.

The estimator is also extended to blind multitarget copy
and copy-aided DF algorithms in applications where multi-
ple SOIs with known properties are received by the array.
In particular, it is shown that the ML estimation approach
can copy and localize structured SOls in severely overloaded
environments where the number of received SOls is much
greater than the number of elements in the antenna ar-
ray. As a result, these techniques are particularly attractive
in dense environments and/or low-cost collection systems
where limited numbers of antennas are available to the pro-
cessing system.

2. BLIND WAVEFORM ESTIMATOR

2.1. Multiple-SOI Environment Model

A signal model appropriate for environments that contain
multiple structured SOIs has a complex baseband represen-
tation for the received data {x(n)}..

x(n) = 1i(n) + Ass(n) (1)
& X = T+ SAg, (2)

where S is a matrix containing L unknown deterministic
SOI waveforms such that {S}.; = s;(n) and As is the
M x L matrix of steering vectors for each of those SOls,
and where 7 is the Hermitian of a matrix whose columns
are circularly-symmetric complex-Gaussian random vectors
of zero mean and unknown covariance matrix (ACM) Ry,
containing all of the unstructured noise and interferers in
the environment. The ML estimates of As, Ry;, and S
are then given by the minimizers of the joint multitarget
maximum-likelihood cost function

o (S Aw Ryg) = Nln [(Ry;)]
Ty {R;il (x —sAf)” (x - SA§)} (3)
If the interference ACM Rj; is an unknown positive-definite

Hermitian matrix, Ag is an unknown and unconstrained
complex matrix, and S is constrained to be a member of



a multiple-SOI property set Ds, then the ML estimates of
As, R;;, and S are given by [3]

Al = x"s(s"s) ", (4)
Rii|ML = % [XHPL (S) X] (5)
Swr. = arg srgls Fur (S), (6)
H
Fumw(S) = det [dset (PS;(S))() 8] , (7)
Fur(S) = n&ifn Fur (S, W)
Fuw (S, W) = % (8)

where Fyr is the concentrated multitarget ML cost func-
tion, the Frobenius matrix norm is used in the numerator
of (8) and P, (B) is the orthogonal projection operator de-
fined by P, (B) = I — P(B) and P(B) = B(B”"B) 'B”.
The formulation of the objective function in (8) is useful for
analyzing the property set constraint in the optimization of
(6).
Note that Fymg, differs markedly from the cost function
used in conventional multitarget ML sequence estimation
[8], due to the assumption of unknown interference ACM
R;; in the formulation of (7). This assumption is war-
ranted if i(n) contains unknown spatially coherent or in-
coherent interference, for example, unstructured interfering
waveforms, low-level (uncollectable) structured waveforms,
or environment-limited background noise. In some cases,
this interference may be much stronger than the structured
signals of interest, for example, if the collection system is
operating in a jammed environment.

The general multitarget cost function can be difficult
to optimize in practice, due to the complexity introduced
by the determinant operation in (7). However, the cost
function can be manipulated to yield powerful multitarget
estimation strategies in many practical collection environ-
ments by using alternating directions optimization. This
strategy holds all signals except one fixed, and optimizes
over the single unknown signal. The process is repeated
for the other signals. The analysis for each optimization
step is comparable to the single SOI problem. The resul-
tant algorithm typically yields time-varying and/or nonlin-
ear processing structures (depending on the SOI properties
being exploited by the processor), and can provide copy per-
formance well beyond that obtained by conventional linear
time-invariant antenna arrays.

In particular, the multitarget ML estimator can blindly
extract structured SOIs from conventionally overloaded en-
vironments containing L > M SOI waveforms, with mean-
square error (MSE) well beyond the minimum MSE obtain-
able by linear processors in the same environment. This
performance is demonstrated in the briefing package [1] for
a 4-element antenna array receiving 8 noise-modulated FM
signals, and by a single-element collection system receiving
10 data-modulated CPFSK signals.

2.2. Single SOI Solutions for Various Property Sets

The analysis for the case of a single SOI is illustrative of
the copy-aided technique and provides a basis for obtaining
the multi-target SOI estimation.

If s = S consists of a single constant modulus SOI,
then (8) can be optimized by the constant modulus property-
mapping recursion,

wo— (xPX) T xMs (9)
§ — CL{Xw} (10)

Recursion (9)-(10) is then continued until § and W converge
to fixed values. Recursion (9)-(10) is identical to the least-
squares CMA (LSCMA) first introduced in [2]. As shown
in [3], the recursion can also be extended to signals with
known or periodically repeating modulus distribution.

If s(n) lies within a known linear subspace (6) can be
solved in closed form. For example, if Dg is the set of time
or frequency limited waveforms, the signal property set is
given by

Ds = {ZGCN Tz = Psz} (11)
for some known linear projection operator Pgs, and gener-
ates ML, waveform estimate

smr, = XsWwL (12)

wi (Xng) w

wi (XEX )w’ (13)

VAVML = arg max

w
where Xs = PsX and X = X — Xg are the projections of
the received data X onto the subspace containing the SOI
and orthogonal to the SOI, respectively.

If s(n) possesses perfect conjugate self-coherence after
removal of a known modulation (e.g., a complex sinusoid),
then the signal property set is given by

Ds = {ZGCN tz = bz*} (14)
after removal of the known modulation factor. This gener-
ates the ML waveform estimate [7]

sMr, = Re {XVAVML} (15)

Re{w” (X"X)w}

WML = arg max — . XTX) w (16)

3. EXTENSION TO COPY-AIDED DOA
ESTIMATORS

The methodology used to develop the ML constant modu-
lus waveform estimator can be used to develop DOA esti-
mators that also exploit the additional structure of the SOI
waveforms. In particular, the ML estimation procedure

can be used to derive a generic class of DOA estimators
referred to here as copy-aided DF algorithms, by using the
waveform estimate provided by a blind copy “front-end” to
estimate the DOA of the waveform captured by that front-
end.

This is accomplished by considering the DOA estimate
of a known SOI s received from an unknown DOA with
an unknown complex gain (power level and phase shift).
Assuming reception by a narrowband antenna array, the
received data signal X has complex baseband representation

X = T+ sal (17)
as = gsa(fs) (18)



where gs and 65 are the unknown gain and DOA of s, and
where 7 is given by (2) and {a(#)} is the DOA manifold of
the array. Optimizing the ML objective function obtained
from the model in (17) with respect to Ry;, gs, and 6 and
removing constant terms yields

. N e ANAH /e AN A
Rii‘ML = Rii +ée (gs-, 65) £ (gs-, 65) Rss (19)
N A N
£(g,0) = gal(f) —as
o] _ aH(H)lA:{;)l(fis (20)
ML ARk a,
slyr, = arg mgXSML(O) (21)
AHD —1 2
a, Ryya(f
SML(Q) é XX ( )’ (22)

[aFRyxas] [a (0)Rxxa(0)]

where a5 and Rii are the unconstrained ML estimates of as
and Ry; given in (4)-(5) and where Rxx and Rss are the
ACM of x(n) and s(n) measured over the collect interval.
Swmr(6) can be interpreted as a DOA spectrum ranging be-
tween 0 and 1 is maximized when the “angle” between as
and a(f) is minimized. Sy (0) can also be expressed using
. —1

the least-squares copy vector wis = (XHX) XHs that
minimizes the mean-square error between s and Xw,

V?’Iljsa(e)

[WiRxxwis] [a (0)Ryxa(0)]

’ 2

Swmr(0) =

(23)

Equation (23) motivates the ML-like copy-aided DF al-
gorithm [9], given by

6, = arg max S(0; ws) (24)
wia(6)

[WHRxxw| [a” (0) Rxxa (0)]

‘ 2

>

S(6;w)

(25)

where wg is a set of blind signal copy weights used to ex-
tract an arbitrary structured SOI s(n) from a received data
set x(n). Equation (25) is referred to as the ML-like DOA
spectrum, due to its similarity with the maximum-likelihood
objective function given in (23). The spectrum ranges be-
tween 0 and 1 and has a global maximum in the vicinity of
the SOI DOA 6, if wx(n) provides an accurate estimate
of s(n). The algorithm can also be used in environments
containing multiple SOIs, if each of those SOIs can be ac-
curately estimated by its own signal copy vector.

The ML-like spectra are signal-specific, in the sense that
they are uniquely defined for each signal copy vector, and
have a global maximum in the direction of the signal cap-
tured by that copy vector. The ML-like spectra also do not
require knowledge of the background noise covariance ma-
trix or the number of received emitter wavefronts L to oper-
ate, and can be used with any signal copy “front-end” that
can provide usable copy weights. As a consequence, the
technique has important implementation advantages over
conventional DOA estimators that require optimization of
multimodal or multidimensional objective functions to si-
multaneously determine all of the wavefront DOAs, and
that are heavily dependent on prior knowedge (or correct
estimation) of the noise covariance or the number of re-
ceived wavefronts. In addition, it can be shown that the

ML-like spectrum adheres to a DF error bound (referred to
here as the single-SOI Cramer-Rao DF error bound) that
can be significantly lower than error bounds adhered to by
conventional techniques, and that the estimator can resolve
> M co-channel wavefronts using an M -sensor antenna ar-
ray.

A true joint maximum-likelihood estimate of the SOI
waveform and DOA can be obtained if s(n) belongs to a
known subspace or has perfect conjugate self-coherence. In
the former case, the joint ML DOA and waveform estimate
is given by

af(0) (XX 1) " a(0)

O = arg meax 27 (0) (XHX)71 NG (26)
s, = Xsw (éML) (27)
w(o) = (x7x1) a(0) (28)

This estimator is identical to the ML, DOA estimator given
in [10] for bandlimited SOIs. In the latter case, the joint
DOA and waveform estimate is given by

wT(6) (XTX) w(0)

= argmax |\ o ST w | %)
s = Re{Xw(0)e ¢} (30)
w(o) = (X7x) 'a(®) (31)
o) = %4 [w” () (XX) w(6)] (32)

It can be shown that these estimators reduce to the uncon-
strained blind copy front-end given by (12)-(13) and (15)-
(16), respectively, followed by the ML-like copy-aided DF
backend given in (24)-(25), if the time-bandwidth product
of X or X5 is large.

3.1. Extension to Multiple-SOI Environments

The copy-aided DF procedure described above can also be
used to derive multitarget copy-aided DOA estimators with
much higher accuracy than conventional or (single-SOI)
copy-aided DF algorithms. These estimators are derived by
assuming reception of multiple known (or estimated) SOIs
from differing directions of arrival, such that

the received data signal X has complex baseband rep-
resentation

X = T+ SAs (33)
As = l[ga(01) - gra(0r)] (34)

where {g/}le — g, and {Og}le — 0, are the unknown
gains and DOAs of {sg}f:1 — S, and where 7 is given by (2)
and {a(f)} is the DOA manifold of the array. Estimation
of the SOI DOAs 0 is then accomplished by minimizing
(3) with respect to Ry;, gs, and 0, using the constrained
steering vector model given in (34).

Formulation of the multitarget copy-aided DF estima-
tor is beyond the scope of this paper. However, a computa-
tionally simple approach has been developed in [11], which
provides a separate signal specific copy-aided DOA estima-
tor for every SOI captured by a multitarget copy front-end.
Each estimator has a global maximum in the direction of



the SOI captured by the copy front-end, and is optimized
via a single dimensional search over DOA. In addition, each
estimator is immune to DF/modelling errors induced in
the other DOA estimators, does not require knowledge of
the background interference covariance matrix to operate,
and adheres to a DF error bound that can be much lower
than the conventional unaided or (single-SOI) copy-aided
Cramer-Rao DF error bounds. Lastly, the algorithm can
operate under much more severe loading conditions than
either of the conventional estimators, especially if the SOI
estimates are provided using the multitarget approach de-
scribed in Section 2.1. As a result, the algorithm retains all
of the implementation advantages of the single-SOIl copy-
aided DF algorithm, with additional gains in DF accuracy
and robustness in dense interference environments.

4. SIMULATION RESULTS

Extensive simulation results are provided for these estima-
tors in [1]. These simulations demonstrate the following
performance results:

e blind acquisition and copy of two simulated burst-
CPFSK waveforms in the presence of two severe struc-
tured and unstructured co-channel interference using
a four-element linear antenna array, with copy per-
formance nearly equal to accuracies attained by the
nonblind linear array;;

e blind acquisition and copy of three real FM wave-
forms using a 3-element linear antenna array, with
copy performance nearly equal to accuracies attained
by the nonblind linear array;

e blind separation of eight (8) co-channel noise-modulated

FM waveforms using a 4-element antenna array and
a multitarget ML estimator, with copy performance
well beyond accuracies attained by the nonblind lin-
ear array;

e blind separation and demodulation of ten (10) co-
channel data-modulated CPFSK waveforms using a
single- sensor collector, based on the CPFSK struc-
ture of the SOTs, with demodulation performance well
beyond accuracies attained by the nonblind demodu-
lator;

e copy-aided DF of burst, BPSK, and FM SOIs copied
by single-target and multitarget processor front-ends,
with DF performance well beyond accuracies attained
by conventional unaided DF approaches.

e copy-aided DF of all eight of the FM SOIs captured
by the multitarget ML waveform estimator, at DF
performance well beyond accuracies attained by con-
ventional unaided or (single-SOI) copy-aided DF al-
gorithms.

These results underscore the utility of the maximume-likelihood

estimation approach, especially in overloaded environments
where the number of co-channel emitters overwhelms the
capabilities of conventional linear processing techniques.

5. CONCLUSIONS

A general approach for blind adaptive signal processing,
based on maximume-likelihood estimation of signals and pa-
rameters with known properties received by antenna arrays,

is presented. ML waveform and wavefront DOA estima-
tors are developed for operation in environments contain-
ing multiple constant modulus signals, for example, FM and
CPFSK communication signals, and demonstrated for envi-
ronments containing multiple co-channel FM and CPFSK
waveforms. The ML waveform and DOA estimation con-
cept is also extended to burst, agile, and transient wave-
forms with limited time and/or frequency support, and to
BPSK and DSB-AM waveforms with constant phase char-
acteristics. These results are demonstrated in the briefing
package [1].

The ML estimation approach developed here can also
be generalized in a number of different manners. The spe-
cific approaches presented here are easily extended to trans-
mitted signals with more complex modulus properties, for
example, burst BPSK waveforms. The ML estimator can
also be extended to wideband collection systems where the
SOIs are received in the presence of frequency-selective in-
terference and channel distortion (multipath).
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