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ABSTRACT

This paper describes a new method for computational
auditory scene analysis which is based on 1) waveform
operators to extract instantaneous frequency (IF), fre-
quency change (FM), and amplitude change (AM) from
subband signals, and 2) a voting method into a prob-
ability distribution to extract coherency (shared fun-
damental frequency, shared FM, and shared AM) in-
volved in them. We introduce non-parametric Kalman
�ltering for the time-axis integration. A consistent AM
operator which is independent to frequency change is
newly de�ned. Sharpness of the resultant probability
distribution is examined with relating to the de�nition
of the operators and subband bandwidth. We evalu-
ate the performance of the algorithm by using several
speech sounds.

1. INTRODUCTION

Segregation of individual streams from a mixture of
sound is a fundamental subject of auditory scene anal-
ysis. To perceive `stream', it is mentioned[4] that man
utilizes mostly the periodicity (harmonic structure) of
sound and the synchrony (we use the term coherency
instead) of amplitude change and frequency change in
the time-frequency domain. For computational imple-
mentation of it, algorithm should essentially be com-
posed of: 1) decomposition of mixed sounds into ele-
mentary components, 2) giving attributes to the ele-
mentary components (labeling), and 3) grouping them
into streams according to the attributes. Following this
line, we proposed[1] the use of coherency in loudness
change and pitch shift extracted by the loudness/pitch/
timbre decomposition operators[2].

In this paper, we propose an alternative method
in which we extract stream attributes from waveform
of subbands. We label each subband signal by three
dominant coherency: 1) coherency in instantaneous fre-
quency (shared fundamental frequency), 2) coherency

in relative frequency change (shared FM), and 3) co-
herency in relative amplitude change (shared AM). We
introduce a voting method into a probability density
function and non-parametric Kalman �lter[1] for seg-
regating a complex sound into individual streams. We
show several experimental results of �nding the most
salient stream and extraction of it from complex sounds.

2. SUBBAND DECOMPOSITION

Let f(t) be a sound and let

f̂(t; !) = e!
Z
 �(e!(� � t))f(� )d� (1)

be wavelet transform of it, where ! denotes log-frequency.
In order to assure �ne time-frequency resolution and
analyticity, we used Gabor analyzing wavelets

 (t) � A exp (�
�2t2

2
+ j
ct); (2)

where A is a normalization constant, � is a half band-
width, and 
c is a center frequency. For our applica-
tion, a narrow bandwidth (� = 1=24
c) is appropriate
to reduce interference between components.

Fig.1(a) shows wavelet amplitude (jf̂ (t; !)j) distri-
bution of a single voice (female: utterance `realize') and
(b) shows waveforms of it (100ms from the beginning
of (a)). We can observe: 1) in almost all the subbands,
vibrating frequencies maintain an integer multiple rela-
tion of the fundamental frequency, 2) the pattern often
shows a uniform shift across their adjacent subbands,
and 3) a uniform increases/decrease of its amplitude.

3. EXTRACTION OF ATTRIBUTES

3.1. Shared Fundamental Frequency

Using instantaneous amplitude and phase

A(t; !) = jf̂(t; !)j; �(t; !) = arg[f̂(t; !)] (3)
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Fig.1: Wavelet distribution of a voice (female, utterance

`realize`). (a) wavelet modulus, (b) waveforms of subbands

[50-150ms].

of f̂(t; !), respectively, we can calculate instantaneous
frequency (IF)[3] as


(t; !) =
1

2�

@

@t
�(t; !): (4)

Two scatter diagrams of IFs of subband signals are
shown in Fig.2(a) and (b). Although IFs from 1/3
octave �lters spread widely, those from 1/24 octave
�lters concentrate on the fundamental frequency and
its integer multiples. These results show the narrow
bandwidth (e.g. � = 1=24
c) is better to reduce the
interference.

3.2. Shared FM

Let us de�ne a frequency change rate (FCR)

�(t; !) =
_
(t; !)


(t; !)
(5)

of a subband signal. It is a relative measure of fre-
quency change de�ned in the subband. Fig.2(c) shows
a scatter diagram of FCR. Concentration of FCRs is
seen as a black line, which is corresponding to the in-
tonation of the utterance.
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Fig.2: Scatter diagram of (a) instantaneous frequency (� =

1=3
c), (b) instantaneous frequency (� = 1=24
), (c) fre-

quency change rates(� = 1/24). (Utterance `realize' shown

in Fig.1.)

3.3. Shared AM

Let us de�ne, tentatively, an amplitude change rate(ACR)
as

�(t; !) =
_A(t; !)

A(t; !)
: (6)

Fig.3(b) shows a scatter diagram of ACR of a syn-
thesized sound shown in Fig.3(a). Although ACRs of
subband signals having stable frequency concentrate
on one line, those of increasing signals spread widely.
This is because instantaneous amplitude of a subband
is a�ected by both amplitude change and frequency
change of a stream which shifts across adjacent sub-
bands(Fig.4). To de�ne an ACR independent to fre-
quency change, let

�(t; !) =
D
Dt
A(t; !)

A(t; !)
; (7)

be a modi�ed ACR, where D
Dt =

@
@t + v(t) @

@! denotes
Lagrangian description of a di�erential[7]. Because ve-
locity of a stream is equal to �(t), we can calculate the
modi�ed ACR as

�(t; !) = (
@

@t
A(t; !) + �(t; !)

@

@!
A(t; !))=A(t; !): (8)
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Fig.3: (a) Wavelet modulus of a synthesized sound, (b)

scatter diagram of amplitude change rates(ACR), (c) scat-

ter diagram of modi�ed ACRs.

Fig.3(c) shows a scatter diagram of modi�ed ACRs.
We can observe that the spreading components in (b)
concentrates on one line.

4. FREQUENCY AXIS INTEGRATION:

VOTING

We construct a probability density function (pdf) by
voting (�(t; !); �(t; !); 
(t; !)) along frequency axis. The
highest peak will correspond to the most salient stream.

Let N (x; �2) be a normal distribution whose mean
and variance are x and �2, respectively. We construct
a pdf at a sampled time tl as

Ql(�;�; 
) =
1

T (!H � !L)

Z tl+T=2

tl�T=2

Z !H

!L

N(�(t; !); �2�)N (�(t; !); �2�)�(
(t; !))dtd!; (9)

�(
(t; !)) = (
X
n

1

n
)�1
X
n

1

n
N (
(t; !)=n; �2
); (10)

where [!L, !H ] and T denote bounds of voting region
which we used [65Hz, 4kHz] and 5ms, respectively. In
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Fig.4: A�ection of frequency change of a stream to ampli-

tude change.

order to integrate integer multiple relations of IFs, we
also vote them at the log-frequency 
=n; (n = 2; 3; :::)
as eq.(10). Their weights are set to 1=n. Variances ��,
�� and �
 are small constants which assimilate small
di�erences in subband attributes.

5. TIME AXIS INTEGRATION:

NON-PARAMETRIC KALMAN FILTER

Because the constructed pdf generally has lots of peaks
caused by harmonics, sub-harmonics, noise etc. (see
Fig.5(b) in Experiments), we successively integrate the
pdf sequence by non-parametric Kalman �lter (NPKF)[1].

Let xt = (�; �; 
) be a stochastic variable vector at
t, P (xt) be a state pdf and Yl = fyl; :::; y1g be a set of
observations before tl where yi denotes an observation
at ti. Initially we give an uniform distribution to P (x0).

a) Di�usion Step

Because we have no observation Ql(x) in the inter-
val (tl�1 < t < tl), we simply di�use P (xtl�1 jYl�1) by
convolving a di�usion kernel P (xtjxtl�1) which we used
a simple Gaussian, as

P (xtjYl�1) =

Z
P (xtjxtl�1)P (xtl�1 jYl�1)dxtl�1 : (11)

b) Cohesion Step

At t = tl, we integrate (cohese) Ql(x) and P (x) as

P (xtjYl) =
Ql(x)P (xtjYl�1)R
Ql(x)P (xtjYl�1)dx

: (12)

To extract attributes of the most salient stream, we
continuously trace the maximum position of P as

(~�(t); ~�(t); ~
(t)) = fxtjP (xt)! maximumg: (13)



6. RECONSTRUCTION OF SINGLE

STREAM

To �nd subbands consistent with the traced stream at-
tributes, let

D2
k(t; !) = ��(�(t; !)� ~�(t))2 (14)

+ ��(�(t; !)� ~�(t))2 + �
(
(t; !)� k ~
(t))2

be a square distance between the trace and attributes of
a subband, where k denotes an integer multiplied to the
traced IF and ��; �� and �
 denote weight constants.
Let

G(t; !) =
X
k

1

(Dk(t; !)=D0)N + 1
(15)

be a compatibility function, where D0 determines ad-
missible error size and N determines sharpness of cut-
o�. Then we can �nd signals which forms the stream
by multiplying G to f̂ . We reconstruct a sound of the
stream by inverse wavelet transform as

~f(t) = C

Z
e
1

!G(�; !)f̂(�; !) (e!(� � t))d�d!; (16)

where C denotes a normalization constant.

7. EXPERIMENTS

Fig.5(a) shows a wavelet modulus of a mixture of two
voices, one of which is the voice shown in Fig.1 and the
other is a word `weekday' uttered by a male speaker.
The range of wavelet transform is 6 octave from 62.5Hz
to 4kHz. SNR of the female's voice is 1.5dB. Fig.5(b)
shows a pdf sequence constructed by voting. Since we
cannot display a 3-dimensional distribution, we show
a result along IF-axis, which is computed by q(t; 
) =R
Qt(�;�; 
)d�d�. Fig.5(c) shows a NPKFed pdf se-

quence (again for only IF-axis). One peak is continu-
ously extracted, which corresponds to fundamental fre-
quency of the female's voice. Fig.5(d) shows a recon-
structed wavelet modulus of the traced stream. Com-
paring to Fig.1, we can con�rm that the voice `realize'
is almost perfectly extracted. SNR of the female's voice
is improved to 12.7dB.
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Fig.5: Experimental results for concurrent voices. (a)

wavelet modulus of the mixed voice (`realize' (female) and

`weekday' (male)), (b) pdf sequence constructed by voting

(showing only along IF axis), (c) NPKFed pdf sequence

(IF-axis), (d) reconstructed wavelet modulus.


