
BEHAVIORAL SYNTHESIS OPTIMIZATION USING MULTIPLE PRECISION
ARITHMETIC

Milos Ercegovac, Darko Kirovski, George Mustafa, and Miodrag Potkonjak

Computer Science Department,
University of California, Los Angeles, CA 90095-1596 USA

fmilos,darko,mustafa,miodragg@cs.ucla.edu

ABSTRACT

Modern image and video processing applications are char-
acterized by a unique combination of arithmetic and com-
putational features: fixed point arithmetic, a variety of short
data types, high degree of instruction-level parallelism, strict
timing constraints, high computational requirements, and
high cost sensitivity. The current generation of behavioral
synthesis tools does not address well this type of applica-
tion.

In this paper we explore the potential of using multiple
precision arithmetic units to effectively support implemen-
tation of image and video processing applications as ap-
plication specific integrated circuits. A new architectural
scheme for collaborate addition of sets of variable precision
data is proposed as well as an allocation and assignment
methodology for multiple precision arithmetic units. Exper-
imental results indicate strong advantages of the proposed
approach.

1. INTRODUCTION

Recently, the fast growing multimedia consumer market re-
defined the relative importance of design metrics for modern
image and video processing (IVP) application specific inte-
grated circuits (ASICs). The next generation of IVP ASICs
is a unique combination of arithmetic and computational
features: fixed point arithmetic, a variety of short data types,
high degree of instruction-level parallelism, strict timing
constraints, high computational requirements, and high cost
sensitivity. The current academic and industrial synthesis
tools do not address well this type of requirement.

One of the key problems and currently ignored opti-
mization potential, is a support for variable-length data types.
The importance of employing multiple precision arithmetic
units in IVP ASICs is well illustrated by the recent arith-
metic and architectural trends in IVP programmable plat-
forms. The majority of the latest general purpose architec-
tures provide support for multiple precision execution units.
For example, both the Intel MMX multimedia extension to
Pentium Pro [Pel96] and the SUN UltraSparc II architecture
[Gol96] provide instruction sets and adequate architectural

support for execution of low-precision instructions in paral-
lel on partitioned arithmetic logic units.

In this paper, for the first time, we combine arithmetic
and behavioral synthesis techniques to explore the potential
of multiple precision arithmetic units for area optimization
of IVP systems on silicon. A new simple, yet powerful,
hardware scheme for multicycle addition of variable preci-
sion data is proposed. The scheme is supported with devel-
oped synthesis software for resource allocation and com-
putation assignment of multiple precision arithmetic units.
The experimental results indicate high potential of the mul-
tiple precision paradigm as a viable design methodology in
the development of IVP ASIC systems.

1.1. Motivational Example
A flavor of advantages of multiple precision arithmetic is
illustrated using the following motivational example. A set
of 15 additions is implemented on two architectures, tradi-
tional (fixed) and new (multiprecision). The first architec-
ture is exclusively built out of monolithic arithmetic units
(adders), while the second architecture is based on units
which can be adjusted to the computation “precision needs”.
Relevant timing and area data are given in Table 1.

Computation Arithmetic Units
Prec. Instances Prec. Area(�m2) Delay
8b 5 8b 1:69 � 105 53.8ns
16b 5 16b 3:9 � 105 71.7ns
32b 5 32b 6:6 � 105 89.6ns

Table 1: Motivational example: Computations and arith-
metic units (CLA adders) [Deadline = 360ns]

The first architecture, in order to satisfy the computation
deadline, requires two 32-bit, one 16-bit and one 8-bit adder
resulting in chip area of18:8 � 105�m2. The delay of the
system clock is set to90ns and the computation requires
4 clock cycles. If the hardware units are allocated and the
computation is assigned and scheduled as shown in Figure
1, the required area is equal to:

Area =2 � 3:9 � 105 + 3 � 1:69 � 105 = 12:8 � 105�m2

Since there are no 32-bit units and the computation dead-
line allows 5 cycles, the system clock is set to72ns.

32-bit

32-bit

16-bit

8-bit

32 32 32 32

32 16 16 16

16 16 8 8

 8 8 8

16-bit

16-bit

8-bit

8-bit

32 32

16

 8

 8

8-bit 8

16

32 32

32

16 16

16 8 8

Architecture 1. Architecture 2.

Figure 1: Motivational example: Optimized allocation and
scheduling

For an efficient optimization methodology which uses
multiple precision units, the following two issues are cru-
cial. First, operations of higher precision demand execution
on lower precision arithmetic units with minimum delay
overhead. Second, once multiprecision arithmetic support
is provided, in order to minimize the system cost, efficient
algorithms for resource allocation and operation assignment
are required to create and utilize the computation system.

2. RELATED WORK

Recently, multiple precision execution units have been aug-
mented in new general purpose architectures (for example,
Intel MMX multimedia extension to Pentium Pro [Pel96]
and the UltraSparc II Visual Instruction Set (VIS) architec-
ture from SUN [Gol96]). Compiler support for these archi-
tectures has concentrated on various IVP applications such
as MPEG decoding [Zho95]. Efficient software utilization
of the Pentium MMX and UltraSPARC VIS architectures
has been discussed [Bli97], [Mou96]. The difficulty of im-
plementing and using efficiently multiprecision arithmetic
on standard general purpose processors has been described
in [Kar93], [Rog95].

Multiple precision has been a popular topic in computer
arithmetic for a long time. Schwartzlander and Schulte have
designed an interval arithmetic coprocessor [Sch95]. The
interesting point they brought up is that arithmetic hardware
was generally reusable, as long as some additional hard-
ware was available to handle operand multiplexing and stor-
age of results. Variable precision algorithms for multiplica-
tion, division and square-root have been developed [Smi96],
[Tak95], [Lou95].

3. THE NEW APPROACH

3.1. Arithmetic
In order to evaluate the effectiveness of multiprecision logic
in IVP applications, we have developed and extensively sim-
ulated a number of hardware implementations of simple mul-
tiprecision adders. Operand multiplexing was recognized as
the main delay overhead in multiprecision hardware schemes.
We present a simple, and yet effective, paradigm for multi-
ple precision addition hardware. The strategy does not use

multiplexing elements on the critical path of the addition
operation. The scheme is illustrated in Figure 2. The 8-bit
operands are forwarded to the 8-bit addition logic by shift-
ing within the 32-bit input registers. Similarly, the result is
shifted in the 32-bit register. Note that usage of shift reg-
isters enables simultaneous occurrence of addition and shift
operations.

8-bit

Register

8-bit

Register

8-bit

Register

8-bit

Register

Load

Shift8/Shift16/
Load

Input 8 88
8

Adder
Operand

8

Input Input Input

MUX MUX MUX

Figure 2: Multiplexed 4x8-bit input network.

The above hardware structure has been implemented us-
ing the Berkeley 0.5�m CMOS Low Power Standard Cell
Library. A detailed SPICE simulation has resulted in area
and delay estimations as presented on Table 1. Although rel-
atively simple addition algorithms were considered, the re-
sulting performance is comparable to real-life designs. The
model experimented is used in the optimization algorithm
evaluation.

3.2. Optimization Problems
We now formulate the optimization problems associated with
behavioral-level synthesis of multiprecision IVP designs and
establish their computational complexity. Our synthesis ap-
proach has two optimization intensive phases: resource al-
location and operation assignment. Note that due to the
high level of available parallelism, the standard scheduling
algorithm provides high quality scheduling. The targeted
synthesis subproblems are defined in the standard Garey-
Johnson [Gar79] format.

Problem: Multiple precision arithmetic unit alloca-
tion for synthesis of area-minimized ASIC datapath.

Instance: Given a set ofA arithmetic units with cor-
responding operation precisionsKi; i = 1; ::; A and asso-
ciated costsAarea

i
; i = 1; ::; A, and a set ofN independent

computations with corresponding precisionsLi; i = 1; ::; N

and positive real numberC.
Question: Is there a multisubset of arithmetic units (sub-

set where some arithmetic units can be included more than
once) such that each computation is assigned to exactly one
arithmetic unit and the sum of costs of selected arithmetic
units is at mostC?

Problem: Assignment of computations to allocated
hardware resources for optimal execution performance.

Instance: Given a set ofA arithmetic units with cor-
responding operation precisionsKi; i = 1; ::; A and asso-

ciated costsAarea

i
; i = 1; ::; A, and a set ofN independent

computations with corresponding precisionsLi; i = 1; ::; N

and positive integerDeadline.
Question: Is there an assignment which assigns each

computation to exactly one arithmetic unit in such a way
that the required time for execution of allN operations does
not exceedDeadline?

We proved that the allocation and assignment subprob-
lems for IVP area and performance optimization are NP-
complete. The proof is based on the classical Karp’s poly-
nomial time reduction technique and the number partition-
ing problem as the starting point [Gar79].

4. ALLOCATION AND ASSIGNMENT

In this section we elucidate the algorithms for resource al-
location and operation assignment. The resource alloca-
tion algorithm is based on a multi-gradient search, while
the operation assignment algorithm relies on a novel gener-
alized and modified Karmarkar-Karp’s number partitioning
heuristic. While searching for the area-minimal arithmetic
unit configuration, the resource allocation algorithm itera-
tively invokes the assignment procedure. This procedure
decides whether the generated current ALU configuration
can produce an operation assignment whicih satisfies the
real-time constraint.

4.1. Resource Allocation
The resource allocation search is initiated by selecting a
starting configuration of all “highest precision” units. The
maximal current system cost (MCSC) is defined as the dif-
ference of the initial solution cost and the minimal cost dif-
ferential (�) among all available units. Then, the search
for the solution with the lowest cost is performed based on
the steepest descent gradient search algorithm. The pseudo-
code and illustration of the search algorithm are presented
in Figure 3.

x

y

Cost LINE

Define initial solution

Subtract X Units of M-bits
Add Y Units of N-bits
The cost < COST_LINE
ASSIGNMENT(CurrentConf)
if (AssignTime < DEADLINE)
 break

Decrease MCSC;

while (NO_IMPROVEMENT < K)

Figure 3: Resource allocation algorithm

The gradient search for the best configuration is per-
formed along the subset of solutions with total area smaller
than the MCSC. Upon each consideration of a new resource
configuration, a simplified procedure for operation assign-
ment is invoked. The procedure checks whether the cur-
rent allocation is able to perform the required computation.

When, for a particular MCSC area bound, a satisfiable hard-
ware configuration is found, the MCSC area bound is de-
creased by�. The search ends when no better solution is
found inK successive iterations (in our experimentations
we usedK = 10000).

4.2. Operation Assignment

The operation assignment algorithm is described in detail
using the pseudo-code in Figure 4. In order to provide effi-
cient algorithmic solution, we developed a novel construc-
tive algorithm by modifying the original Karmarkar-Karp’s
number partitioning algorithm. The modifications answer
the need for additional optimization requirements. Namely,
for a set of single-precision arithmetic units, the problem
of computation assignment can be reduced to the number
(N numbers) partitioning (K partitions) problem. The ad-
ditional optimization requirements are a direct consequence
of available degrees of operation assignment freedom due
to the available multiple precision arithmetic units. When
several different multiple precision units are used, an alter-
native solution technique is used. The solution uses stan-
dard simulated annealing algorithm as the basic algorithmic
approach. The quality of each current solution is adjusted
by applying the generalized number partitioning heuristic
to each subset of units with equivalent precision and their
assigned operations.

Preprocessing:
Sort the starting set S and group consecutive K
elements into groupsGi.
Sort allGi in decreasing differenceGd

i between the
largest and smallest element inGi.
For eachGi and its smallestEmin

i :
For eachEi of S smaller thanEmin

i :
Calculate the

P
allgroups

(Gd
i)

2 if

S is rearranged in a way thatEi is added toEmin
i .

If there is a non-empty set of elements such that
they have a sum of squares of group differences ¡
current sum:

SelectEj from this set that has the minimal
sum and add it toEmin

i .
Sort S and generateGi,Gd

i .
Processing:

For eachgroupGi:
Sort elements in each group in increasing order.

Sort partitions in decreasing order of sums.
For eachEi and partitionPi assignEi toPi.

Postprocessing:
Repeat

For eachgroup pair that has the min and max sum
of elements, search for two elements that,
when swapped, lessen the difference between
the sums of groups.

while there are pairs that can improve the result.

Figure 4: Generalized Karmarkar-Karp’s number partition-
ing heuristic.

5. EXPERIMENTAL RESULTS

In this section we report the results of experimentations to
evaluate the quality of our synthesis paradigm and devel-
oped optimization tools. A set of test cases has been devel-
oped using the DSP Quant benchmark suite [Lee97] and a
set of real-life examples extracted from various multimedia
and communications applications. The experimental results
which describe the advantages of the multiprecision data-
path design paradigm are shown in Table 2. The first col-
umn shows two numbers, where the first quantifies the num-
ber of operations to be assigned, and the second is the ra-
tio of the predetermined multiprecision system cost and the
cost of a system which does not exploit multiple precision
units. The next two columns show the allocation results for
the traditional fixed precision arithmetic system and mul-
tiprecision approach respectively. The results for both ap-
proaches are generated using the developed simulated an-
nealing allocation platform. The fourth column presents
the percent improvement of the multi- versus fixed preci-
sion design paradigm. Note that consistent area improve-
ments were obtained while using the multiprecision design
paradigm and that the last row in the table shows the average
area improvement over series of design tasks.

Precision
Tasks - Fixed (32b) Multi Impr.
Cost (�m2) (8-16-32b) (�m2)
25 - 4 2.61e+06 1.41e+06 46.45%
50 - 7 4.62e+06 2.42e+06 47.52%

100 - 12 7.92e+06 4.84e+06 38.84%
250 - 13 8.58e+06 4.39e+06 48.75%
250 - 22 1.45e+07 0.99e+07 31.53%
500 - 12 7.92e+06 4.44e+06 43.89%
750 - 13 8.56e+06 4.44e+06 48.21%
1000 - 25 1.65e+07 1.02e+07 38.46%

Average improvement 42.97

Table 2: Comparison of fixed and multiprecision datapath
synthesis approaches

Numbers Sets Maximum offset with
N S respect to lower bound
25 4 0.694416%
50 7 0.868912%
100 12 0.63868%
250 13 0.125221%
250 22 0.396182%
500 12 0.0135149%
750 13 0.00484549%
1000 25 0.00868861%
1000 112 0.309386%

Average maximal offset 0.2627%

Table 3: Efficiency of the generalized Karmarkar-Karp’s
number partitioning heuristic.

The efficacy of the developed generalized Karmarkar-
Karp’s algorithm for multiset number partitioning is shown
in Table 3. The first column represents the number of ran-

domly generated numbers. They are partitioned into a num-
ber of sets shown in the second column. In the third col-
umn, for a particular test case, the relative offset of the
largest/smallest sum of numbers in a set with respect to a
lower bound is presented. The lower bound is established
as a sum of all numbers divided with the number of sets.
The percentages in the last column present worst case re-
sults inN � S different number sets. The average maximal
offset for the set of test benchmarks is shown in the last row.

6. CONCLUSION

We proposed and quantified the efficacy of a new arith-
metic scheme for variable precision addition logic, and de-
veloped resource allocation and task assignment algorithms
as a part of our behavioral-level design automation method-
ology for designing area-efficient IVP systems-on-silicon.
The assignement algorithm is based on a developed heuris-
tic for multiset number partitioning. Experimental results
showed area savings with respect to the fixed precision de-
sign methodology in the range of 31-48 percents.

7. REFERENCES

[Bli97] Blinn, J.F. Fugue for MMX. IEEE Computer Graphics and Appli-
cations, vol.17, (no.2), pp.88-93, 1997.

[Gar79] Garey, M.R.; Johnson, D.S. Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman, San Francisco,
CA, 1979.

[Gol96] Goldman, G.; Tirumalai, P. UltraSPARC-II: the advancement of
ultracomputing. COMPCON ’96.

[Kar93] Karmer, W. Multiple-precision computations with result verifica-
tion. Scientific computing with automatic result verification, Aca-
demic Press, pp.325-56, 1993.

[Lee97] Lee, C. et. al. DSP Quant: Design, Validation, and Applications of
DSP Hard Real-Time Benchmarking. ICCASP ’97.

[Lou95] Louie, M.E.; Ercegovac, M.D. A variable-precision square root im-
plementation for field programmable gate arrays. Journal of Super-
computing, vol.9, (no. 3): 315-36, 1995.

[Mou96] Mou, Z.J.A.; Rice, D.S.; Wei D. VIS-based native video processing
on UltraSPARC. International Conference on Image Processing,
pp.153-6, 1996.

[Pel96] Peleg, A.; Weiser, U. MMX technology extension to the Intel ar-
chitecture. IEEE Micro, vol.16, (no. 4): 42-50, 1996.

[Rog95] Rogers, J. Using the multiple precision library. Dr. Dobb’s Journal,
vol.20, (no.1), p.36, 38, 40, 42, 86, 88-9, 1995.

[Sch95] Schulte, M.J.; Swartzlander, E.E., Jr. Hardware design and arith-
metic algorithms for a variable-precision, interval arithmetic co-
processor. 12th Symposium on Computer Arithmetic, 1995.

[Smi96] Smith, D.M. A multiple-precision division algorithm. Mathematics
of Computation, vol.65, (no. 213): 157-63, 1996.

[Tak95] Takagi, N. A multiple-precision modular multiplication algorithm
with triangle additions. IEICE Transactions on Information and
Systems, vol.E78, 1995.

[Zho95] Zhou C.G. et. al. MPEG video decoding with the UltraSPARC
visual instruction set. COMPCON ’95.

