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ABSTRACT

A number of restoration �lters have been proposed for the
restoration problem from partially-known blurs. Recently
we proposed the regularized constrained least-squares �lter
(RCTLS) and we showed that it has a number of advantages
over previous ones [4]. However, the problem of estimating
the parameters that de�ne the RCTLS �lter has not yet
been addressed. In this paper we propose a two-step algo-
rithm based on the hierarchical Bayesian approach to simul-
taneously restore the image and estimate the parameters of
the RCTLS restoration �lter. The algorithm is derived in
the DFT domain; thus, it is very e�cient even for very large
images.

1. INTRODUCTION

In most practical applications, the point-spread function
(PSF) is neither unknown nor perfectly known. For in-
stance, in medical imaging techniques such as positron emis-
sion tomography (PET) and single-photon emission com-
puted tomography (SPECT), the PSF is di�cult to specify
completely, in part because it is object-dependent, owing
to scattering and photon attenuation. In astronomy, atmo-
spheric turbulence yields a random time-varying PSF which
is not known exactly when the image is restored.

Random blurs have been considered before. A linear
minimum mean square error �lter (LMMSE) is developed in
[3, 8]. In [8] an "ad-hoc" iterative algorithm for covariance
estimation is proposed. The convergence properties of this
algorithm, however, were not analyzed in [8].

In [4] fast regularized constrained total least squares
(RCTLS) �lters were derived and implemented in the dis-
crete Fourier transform (DFT) domain. It was shown in
[4] that the RCTLS �lters were superior to the regularized-
least-squares (RLS) �lters that do not take into account
the errors in the PSF and also to the linear minimum mean
square error (LMMSE) �lter [8] for this problem. However,
to e�ectively utilize the RCTLS �lter in [4], the noise and
the image prior parameters must be known prior to restora-
tion.

In [5, 6] two iterative schemes for simultaneous param-
eter estimation and image restoration based on the Expec-
tation Maximization (EM) algorithm were proposed. Al-
though the algorithms in [5, 6] were shown to be very pow-
erfull, they were derived under the assumption that the ob-

served data on the image-dependent noise term are Gaus-
sian which may be too restrictive in certain cases. Because
of this assumption the restoration step of that algorithm
yields a linear �lter which is identical to the LMMSE �lter
in [8].

To overcome the above di�culties for this problem, in
this paper we apply Evidence Analysis (EA), within the
hierarchical Bayesian framework [2, 7], to the partially-
known blur restoration problem. The EA yields the RCTLS
restoration �lter in [4] and simultaneously estimates the re-
quired parameters.

The rest of this paper is organized as follows: In section
II the observation and the image models are discussed. In
section III the hierarchical Bayesian analysis is introduced
and the EA algorithm is derived. Numerical experiments
are presented in section IV and conclusions are given in
section V.

2. OBSERVATION AND IMAGE MODELS

We assume the following degradation model [3, 4, 8]:

g = Hf +�g; (1)

in which g; f ;�g 2 RN are lexicographically ordered rep-
resentations of the observed degraded image, the source
image, and the additive noise in the observed image, re-
spectively. The space-invariant PSF H is represented as
the sum of a deterministic component �H and a stochastic
component of zero-mean �H , i.e.,

H = �H+�H: (2)

The matrix �H is the known (assumed, estimated or mea-
sured) component of the N � N PSF matrix H; �H is
the unknown component of the PSF matrix. The unknown
component of the PSF is modeled as stationary zero-mean
white noise with N�N covariance matrix R�h = 1

�
I, where

1
�
denotes the variance of the PSF noise and I is the iden-

tity matrix. The observation vector g is also modeled with
N �N covariance matrix R�g =

1


I, where 1



denotes the

variance of the observation noise. A circulant approxima-
tion of Toeplitz matrices [1] will be used to allow calcula-
tions to be performed using the discrete Fourier transform
(DFT); thus, R�h, R�g, �H and �H are N �N circulant
matrices [1].



To reduce the complexity of the parameter estimation
step, we use the simultaneously autoregressive (SAR) im-
age prior model [7]. This model can be described by the
following conditional PDF:

P (f j�) = const � �(
N
2
) exp

n
�
�

2
jjQf jj2

o
; (3)

where � is positive unknown parameter that controls the
smoothness of the image and jjQf jj2 is a non negative
quadratic form that captures the image autoregressive model.
For simplicity, but without loss of generality, we shall use
a circulant Laplacian high-pass operator for Q throughout
the rest of this paper [1]. Any other quadratic image prior
can be used without loss of generality (see [6] for Gaussian
priors).

3. HIERARCHICAL BAYESIAN ANALYSIS

For the problem at hand, it is easy to see that the posterior
distribution for the image f depends on the unknown pa-
rameters that describe the observation and the image mod-
els. In the hierarchical Bayesian framework those parame-
ters can be treated as random variables (hyperparameters),
and as such they are assigned hyperpriors (also called a
multistage priors) [2]. We will assume uniform (noninfor-
mative) hyperpriors on the unknown parameters, de�ned
on [0;1).

According to the Evidense Analysis (EA) approach, in
the hierarchical Bayesian framework [7], the simultaneous
estimation of f , �, �, and 
 can be done in two steps:
Parameter estimation step:

�̂; �̂; 
̂ = arg max
�;�;


fP (�;�; 
jg)g : (4)

Restoration step:

f̂(�̂; �̂; 
̂) = argmax
f

�
P (f jg; �̂; �̂; 
̂)

	
: (5)

The estimates �̂, �̂, and 
̂ from parameter estimation step
depend on the current estimate of the image. Likewise,
the estimate f̂ from restoration step will depend on current
estimates of the parameters. Therefore, the above two-step
procedure is repeated until convergence occurs.

According to Bayes rule for PDFs, the joint PDF of the
data, the image, and the parameters can be represented as

P (g; f ; �; �;
) = P (gjf ;�; �; 
)P (f j�;�;
)P (�)P (�)P (
);
(6)

where the hyperparameters are assumed independent from
each other, P (f j�;�;
) does not depend on � and 
 and is
given in (3). Then, to obtain P (�;�;
jg), as required by
(4), we marginalize the PDF in (6) with respect to f [2, 7],
i.e.,

P (�;�; 
jg)/

Z
P (g; f ; �; �; 
)df : (7)

Since we assumed \
at" (non-informative) hyperpriors,
P (�)P (�)P (
) can be discarded in (6). For the restoration

step, as required in (5), the image posterior P (f jg; �̂; �̂; 
̂)

can be obtained applying the Bayes rule to the joint PDF,
i.e.,

P (f jg; �̂; �̂; 
̂)P (g; �̂; �̂; 
̂) = P (gjf ; �̂; �̂; 
̂)P (f j�̂; �̂; 
̂);
(8)

where P (g; �̂; �̂; 
̂) does not depend on f , and P (f j�̂; �̂; 
̂)

is given by (3), evaluated at �̂, �̂, and 
̂.
We assume Gaussian distribution for the noise both in

the PSF and the observations. Then, to determine P (gjf; �; �;
)
we note that vector f is not a random quantity, but rather
a �xed one. It is easy to see from (1) that the likelihood
P (gjf; �;�; 
) is a Gaussian PDF with mean equal to �Hf ,
i.e.,

P (gjf; �;�; 
) =
�
det(2�Rgjf )

�� 1
2

exp
n
� 1

2 (g�
�Hf)

t
R�1
gjf (g�

�Hf)
o
:

(9)

The conditional covariance Rgjf in (9) is given by

Rgjf = E
�
(�Hf +�g)(�Hf +�g)t

	
= E

�
(F�h+�g)(F�h+�g)t

	
;

(10)

where we have used the commutative property of the con-
volution operation, F denotes the circulant matrix gener-
ated by the image f , and �h is the PSF noise vector that
generates �H. Equation (10) can be further simpli�ed as
follows:

Rgjf = FE
�
�h�ht

	
Ft + E

�
�g�gt

	
=

1

�
FFt +

1



I;

(11)
where 1

�
and 1



are the PSF- and the observation noise

variances.
Substituting (3) and (9) into (6) we obtain

P (g; f ; �; �;
) / �
(N2 )[det(Rgjf )]

� 1
2 exp

n
�
1

2
J(f ; �;�; 
)

o
;

(12)
where

J(f ;�; �;
) = �jjQf jj2 + (g� �Hf)
t
R

�1
gjf (g�

�Hf): (13)

3.1. Restoration Step

According to Bayes law

P (g; f ;�; �; 
) = P(f jg;�; �; 
)P(g;�; �; 
): (14)

Since P (g; �;�; 
) does not depend on f

arg min
f
fP (f jg;�; �; 
)g = argmin

f
fP (f ;g; �; �; 
)g :

(15)
Substituting (12) and (13) into (15) we get

f̂(�̂; �̂; 
̂) = argminf (
�Hf � g)

t
R̂�1
gjf

(�Hf � g) + �̂jjQfjj2

+log
�
det(R̂gjf )

�
;

(16)

where R̂gjf = 1
�̂
FFt + 1


̂
.

Equation (16) is equivalent to the RCTLS restoration
�lter in [4]. A practical computation of (16) can be obtained



by transformation to the DFT domain and ignoring the log
term in (16) [6] yields

F̂ (i) = argminF (i)
1
N

�
j �H(i)F (i)�G(i)j2

1
�̂
jF (i)j2+ 1


̂

+ �̂jQ(i)j2jF (i)j2
�

+log
h
1

�̂
jF (i)j2 + 1


̂

i
;

(17)
for each frequency i = 0; 1; � � � ; N�1. In (17) G(i) and F (i)
are the DFT coe�cients of the observed and the restored
images, �H(i) and Q(i) are the eigenvalues of �H and Q,

and �̂, �̂, and 
̂ are the estimates of the hyperparameters
obtained in the parameter estimation step.

3.2. Parameter Estimation Step

To compute P (�;�; 
jg) we substitute (12) into (7). Then,
expanding J(f ; �;�; 
) in Taylor series (second order) around

a known f (n) ((n) denotes the iteration index), and perform-
ing the integration term by term we obtain:

P (�;�; 
jg) / �(
N
2 )det[Rgjf(n) ]

�1
2 det[G(n)]�

1
2

exp
�
� 1

2J(f
(n); �;�; 
)

	
;

(18)

where
G

(n) = �Q
t
Q+ �H

t
R
�1

gjf(n)
�H: (19)

Taking \2 log" of both sides of (18) and taking partial deriva-
tives of the obtained posterior functional with respect to �,
�, and 
, we obtain:

N

�
= jjQf (n)jj2 + tr[G(n)�1

Q
t
Q] (20)

N
�
= tr[ 1

�

R�1

gjf(n)
] + tr[G(n)�1 �HtR�1

gjf(n)
1
�2
F(n)F(n)tR�1

gjf(n)

�H] + (g � �Hf
(n)

)tR�1

gjf(n)
1
�2
F(n)F(n)tR�1

gjf(n)
(g� �Hf

(n)
)

(21)
N


= tr[ 1

�

F(n)F(n)tR�1

gjf(n)
] + tr[G(n)�1 �Ht 1


2
R�2

gjf(n)
�H]

+(g� �Hf
(n)

)t 1

2
R�2

gjf(n)
(g � �Hf

(n)
):

(22)
The parameter estimation cycle in (20)-(22) is repeated in
the DFT domain since all matrices are circulant, until con-
vergence in (18) occurs. In all our experiments with the EA
algorithm we observed that the convergence occured after
several iterations.

4. NUMERICAL EXPERIMENTS

In this section we test the proposed EA algorithm and com-
pare it to the EM algorithm in [5].

The (per pixel) MSE is de�ned as MSE = 1
N
kf � f̂k22;

where f and f̂ are the original and the restored (upon con-
vergence) images, respectively. The MSE measurements
were performed based on Monte-Carlo simulations. To avoid
plotting the 3-D plot of the MSE versus both noise param-
eters we plot two 2-D MSE plots: (Plot-H): For a �xed
SNRg = 30dB we plot MSE versus SNRh by varying 1

�
,

and (Plot-G): For a �xed SNRh = 20dB we plot MSE ver-
sus SNRg by varying 1



. In those plots the noise parameters

are expressed in terms of the signal-to-noise ratios (SNR),
i.e.,

SNRh =
k�hk2

N 1
�

; SNRg =
kfk2

N 1



; (23)

where k�hk2 and kfk2 are the energies of the known part of
the PSF, and the original image, respectively.

In all experiments presented in this paper Gaussian-
shaped PSF given below was used for blurring:

h(i; j) = c � exp

�
�
i2 + j2

2 � 32

�
; for i; j = �15; � � � ; 15;

(24)
where c is a constant chosen so that

P
i;j
h(i; j) = 1.

Experiment I. In this experiment we assume white-
noise PSF perturbations with exact knowledge of the noise
parameters 1

�
and 1



. In order to have a control over param-

eter � we generated the source image based on the Gaussian
image model in (3) and preselected value for �. Then, as-
suming the knowledge of all three parameters, the MSEs
of the EA and the EM restoration �lters are calculated in
Figures 1 and 2.

Experiment II. In this experiment EA and the EM ap-
proaches are compared under the correlated PSF perturba-
tions. More speci�cally, we assume that the PSFs used for
blurring and restoration are Gaussian shaped, but with dif-
ferent widths. The blurring PSF had standard deviation 3:0
while the restoring PSF had standard deviation 4:0. \Lena"
image was used in this experiment. The exact knowledge of
the spectrum of the PSF errors and the knowledge of the pa-
rameter 1



were assumed, while parameter � was estimated

simultaneously while restoring. The constant- 1


MSE plot

is given in Figure 3 and the corresponding images are shown
in Figure 4.

Based on the performed experiments we make the fol-
lowing conclusions. (1) If the source image can be accu-
rately modeled with the prior in (3), the EM-based restora-
tion algorithm (linear) is inferior to the EA restoration �lter
(nonlinear), since the Gaussian assumption on the image-
dependent term does not capture the statistics of the degra-
dation model. (2) The total noise term in the observation
model for the correlated noise case cannot be accurately
modeled with the Gaussian PDF. The images obtained with
the EM approach in this case have ringing artifacts and
poor resolution as compared to images obtained with the
EA approach. (3) In all our experiments neither algorithm
could estimate the PSF and additive noise variances 1

�
and

1


simultaneously, since the sum of these noise parameters

appears in the data. Gamma priors were successfully intro-
duced in [6] to alleviate this problem.

5. CONCLUSIONS

In this paper we applied Empirical Bayesian (EA) anal-
ysis to the simultaneous parameter estimation and image
restoration problem from partially-known blurs. The pro-
posed algorithm was experimentally demonstrated under
both white and correlated point-spread function (PSF) noise
perturbations.
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Figure 1. Constant-
 MSE Plot
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Figure 2. Constant-� MSE Plot
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Figure 3. Correlated PSF noise

Figure 4(a). Degraded image

Figure 4(b). EM algorithm

Figure 4(c) EA algorithm


