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ABSTRACT

We introduce a system for machine recognition of music
patterns. The problem is put into a pattern recognition
framework in the sense that an error between a target pat-
tern and scanned pattern is minimized. The error takes
into account pitch and rhythm information. The pitch er-
ror measure consists of an absolute (objective) error and a
perceptual error. The latter depends on an algorithm for es-
tablishing the tonal context which is based on Krumhansl’s
key-finding algorithm. The sequence of maximum correla-
tions that it outputs is smoothed with a cubic spline and
is used to determine weights for perceptual and absolute
pitch errors. Maximum correlations are used to create the
assigned key sequence, which is then filtered by a recursive
median filter to improve the structure of the output of the
key finding algorithm. A procedure for choosing weights
given to pitch and rhythm errors is discussed.

1. PITCH AND RHYTHM REPRESENTATION

Melodies are perceptually invariant under a multiplicative
transformation of frequencies; hence, pitch relations rather
than absolute pitch features underlie the perceptual identity
of a melody [1]. Since it is this relative information that is
encoded, it is precisely that same information that needs to
be represented on a computer. Taking this into account, we
only need to represent the differences of notes, rather than
the notes themselves. So, for a sequence [g1, g2, --,qn] of n
notes, we define a difference of pitch vector
P =[p1,p2, -, pn—1], where pi = git1 — ¢

as an encoding of the sequence of notes. Note that the ¢; are
absolute pitch values, defined according to, say, the MIDI
standard and thus p; are the number of semitones (positive
or negative) from ¢; to git1.

Representation of rhythm information also relies on a
perceptual invariance under a change of tempo. This type
of invariance is linked to the fact that changes in tempo
maintain constant durational ratios among structural el-
ements [1]. Similar to pitch representation, we represent
ratios of durations rather than the durations themselves.
When encoding or memorizing rhythmic patterns, we reg-
ister times of occurrence of the notes within the metrical
structure, rather than the durations of the notes. Because
of this fact, we will prefer to use a new notion referred to
as the term of a note, which we will define to be the time
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between consecutive note onsets. To this end, for a se-
quence d = [d1,d2,---,ds] of terms, we define a difference
of rthythm vector

diy
d;

r= [T17T27 o 77'17,—1] B where r; =
as an encoding of the sequence of terms.

2. MUSIC PATTERN RECOGNITION

Suppose that a human user has memorized a musical pat-
tern (melody) and wishes to locate it in a large set of musical
compositions. We will refer to the memorized pattern as the
target pattern. The pattern to which the target pattern will
be compared for purposes of classification will be referred
to as the scanned pattern. Our goal is to minimize the error
between the target pattern and the scanned pattern being
considered. The overall error, under the chosen norm, is
comprised of the pitch error and the rhythm error. Percep-
tual information will play a role in the computation of the
pitch error. We will consider these two errors separately.

2.1. Pitch Error

As a first step toward computing the error between the
target and scanned pattern, we wish to be able to reflect
differences of contour - the direction of pitch change from
one note to the next - in our error. Our objective pitch
error is defined as e, = ||p — po||;- The Li-norm is chosen
(as opposed to Ly, p # 1) for lack of any apparent reason to
bias the error in favor or against small or large increments
in pitch. This norm, at this stage of the pitch error, reflects
the differences of contour between the target and scanned
patterns without bias. The bias will come into play when
we incorporate quantified perceptual information.

Performing classification based solely on the objective
pitch error would not take into account the following fact.
All intervals of equal size are not perceived as being equal
when the tones are heard in tonal contexts [4]. For example,
the notes B C played in succession heard in the context of C
Major (for instance, after hearing a strong key-defining se-
quence of notes) would be perceived as being more natural
and stable than the same two notes heard in the context of
D Major. Such phenomena cannot be embodied by the ob-
jective pitch error alone. Perceptual information has been
successfully incorporated into the design of error criteria
for various applications. For example, visual error criteria
based on the human visual system was used in [2].



Since the ultimate goal is to recognize a target pattern
memorized (possibly incorrectly) by a human being, it is
important to consider certain principles of melody memo-
rization and recall. For example, findings showed that “less
stable elements tended to be poorly remembered and fre-
quently confused with more stable elements.” Also, when
an unstable element was introduced into a tonal sequence,
“... the unstable element was itself poorly remembered” [3,
p. 283]. So, the occurrence of an unstable interval within
a given tonal context (e.g., a melody ending in the tones
C Cf in the C major context) should be penalized more
than a stable interval (e.g., B C in the C major context)
since the unstable interval is less likely to have been mem-
orized by the human user. These perceptual phenomena
must be quantified for them to be useful in the classifica-
tion of musical patterns. Such a quantification is provided
by the relatedness ratings found by Krumhansl [3, p. 125].
Essentially, a relatedness rating between tone g1 and tone
g2 (q1 # q2) is a measure of how well g2 follows ¢1 in a
given tonal context. The relatedness rating is a real num-
ber between 1 and 7 and is determined by experiments with
human listeners. Results are provided for both major and
minor contexts. So, a relatedness rating between two differ-
ent tones in any of 24 possible tonal contexts can be found
due to invariance under transposition.

To this end, suppose we are scanning a sequence of
n notes to which we compare a target pattern consisting
of n notes. For the moment, assuming knowledge of the
tonal context of the scanned pattern, we define its vec-
tor of relatedness ratings a = [a1, a2, -+, an—1] as well as
B = [,61,,82, e ,,Bn_l], the vector of relatedness ratings for
the target pattern in the same tonal context. Each a; and
B, is the relatedness rating between pitches ¢; and g;41 in
the given tonal context for the scanned and target patterns
respectively. Having defined the vectors of relatedness rat-
ings for the scanned and target patterns, we can define the
perceptual pitch error to be e, = |ja— f]|;. It is worth
noting that if e, = 0, then e, = 0, while the converse is not
true. We can combine the objective and perceptual errors
into a pitch error

eg=A-ep+(1—X) e

2.2. Establishing the Tonal Context

The above discussion assumed that in the computation of
the perceptual pitch error, we had knowledge of the tonal
context of the scanned pattern. Before proceeding, we should
pose the question: “What exactly is the meaning of the
tonal context of a pattern?” Surely, if the pattern is of
short length (1 note, for example), then speaking about its
tonal context is meaningless. Similarly, if the pattern is
very long, it may consist of several tonal contexts and the
transitions between them are called modulations. Finally,
quite often, a tonal context is a matter of degree in that
for a given pattern, there are several possible candidates
for tonal context. So, just because the key-signature of a
given composition happens to be F major, for example, it
does not imply that the relatedness rating vectors a and
B must be chosen for that particular tonal context, since
modulations and shifting tonal centers are likely to occur.
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Figure 1: Assigned Key Sequence

We thus see the need for a key-finding algorithm which
will present us with a most likely tonal context for a given
musical pattern and this tonal context will be subsequently
used for the relatedness rating vectors. Such an algorithm
was developed by Krumhansl [3, p. 77] and is essentially
based on the fact that “most stable pitch classes should
occur most often” [7]. That is, tones that are sounded most
frequently are the ones with high probe tone ratings, in a
given tonal context (e.g., in a C major context, C, G, and
E occur most often). We now make certain modifications
to this algorithm and present a method for determining the
parameter A. We refer you to the algorithm described in [3,
p. 77].

The algorithm produces a 24-element vector of correla-
tions, r = [r1,---,724], the first twelve for major contexts
and the others for minor contexts. The highest correlation,
Tmax, 18 the one that corresponds to the most likely tonal
context of the musical pattern being scanned.

Suppose a musical composition (or set of compositions)
that we wish to scan for the purpose of recognizing the
target pattern consists of m notes and the target pattern
itself consists of n notes (typically, m > mn). In our algo-
rithm, we slide a window of length n across the sequence
of m notes and for each window position, the key-finding
algorithm outputs a key assignment. Thus, we have a se-
quence t = [t1,t2, -, tm—n+1] Of key assignments such that
t; = arg max (r;). See Figure 1 for an assigned key sequence.
The composition used in that example is Invention #8 by
J.S. Bach with a target pattern p =[7,—8,8,—5,4,1].

It turns out that there is quite a bit of variation in cer-
tain regions of the sequence of key assignments. Moreover,
some impulses last only one note, which would seem to in-
dicate that the tonal context changes for one note and then
changes back - a very unlikely circumstance. This exposes
a “weakness” of the key-finding algorithm in that it may
be sensitive to window length as well as the distribution
of pitches within the window. Nevertheless, whatever the
tonal context is, it makes little sense to think of two mod-
ulations occurring one note apart. Besides this, there are
small areas of oscillations, especially those close to edges
between two flat regions. These edges signify modulations



and as the window slides across them, the key-finding algo-
rithm is unable to determine a prevalent tonal context due
to the presence of pitches that have high probe tone ratings
in two different profiles. As a result, the assigned key values
oscillate until a prevalent tonal context is established. Such
small oscillations and impulses are undesirable, not only be-
cause they do not reflect our notions of modulations, but
primarily because they affect the relatedness rating vectors,
which inherently depend on the tonal context produced by
the key-finding algorithm. Since the values of the assigned
key sequence often appears arbitrary in the regions of os-
cillation, the perceptual pitch error is distorted in these
regions.

As a solution to the above problem, we employ the re-
cursive median filter [5] with a large enough window to re-
move not only the impulses but also the small regions of
oscillations. The output of the recursive median filter is

defined as

yi = med (Yi—v, .« s Yim1,Tiye oy Titw)

where the samples y;—.,...,yi—1 have already been com-
puted during previous positions of the sliding window. It
has been shown that the recursive median filter has a higher
immunity to impulsive noise than the standard median fil-
ter. This makes it a better choice for our purpose than
the standard median filter. Moreover, the output of the
recursive median is more correlated than the output of the
standard median. This is due to the fact that is dependent
on previous output values. This correlation in the output
is advantageous since the tonal context at a particular po-
sition is more strongly dependent on previous values of the
assigned key sequence than on future values. Finally, it is
well known that the recursive median filter is idempotent.
This property implies that any signal is reduced to a root
signal after one pass; i.e., it is invariant to further passes
of the same filter. This assures us that the assigned key
sequence cannot be improved by more filter passes. The
window width of the recursive median filter is a parame-
ter that needs to be chosen. If we are to employ the re-
cursive median filter in order to remove oscillations in the
regions of modulation, we must establish a high measure of
tonal structure prior to and after the region of modulation.
The number of notes necessary to establish this, of course,
depends on key membership of the notes as well as their
relationship to the tonal center (i.e., stability). However,
it has been shown that the maximum correlation, rmax, i
strongly correlated with the degree of tonal structure [7].
Therefore, if rmax is small, indicating a low degree of tonal
structure, we should expect to use more notes to establish
the latter. This implies that the window width of the recur-
sive median filter should be inversely related to rmax. Recall
that for every window position of the key-finding algorithm,
we have a maximum correlation, thus giving rise to the se-
qUeNce Tmax (¢) of maximum correlations. We would like
the window width, W, to be a function of the lowest of the
maximum correlations. That is, W = f (min [rmax (¢)]) and
one possible function is

NS

where [-] is the next odd integer. Experiments show that
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Figure 2: Recursive Median Filtered Assigned Key Se-
quence

values of £k = 17 and v = 8 give good results. The pa-
rameter v simply controls the rate of growth of the win-
dow width with respect to the lowest maximum correlation.
Figure 2 shows a median filtered assigned key sequence us-
ing window width 19 for the recursive median filter, where
min [rmax (¢)] = 0.46. As can be seen, the impulses and
oscillations are completely removed and yet the key assign-
ments (and modulations) reflect what would be expected
upon a visual inspection of the composition.

Now that we can successfully generate the assigned key
sequence t, all that remains is the determination of para-
meter A. Essentially, A is directly related to the maximum
correlation rmax. However, prior to that, it is necessary to
smooth the sequence rmax (i) while maintaining peaks and
removing small oscillations. This is accomplished with a
cubic smoothing spline and is described in [6]. If fmax (7)
is the spline-smoothed maximum correlation sequence, the
definition of A becomes

A (1) = m (Pmax (1) — max (fmax (¢))) + b

where
. b—a
" max (Fmax (1)) — min (Fmax (1))

making A (¢) just a scaled version of fmax (7).

2.3. Rhythm Error

At this point, we are ready to compute the rhythm error
between the target pattern and the scanned pattern. Re-

call that r = [r1,72,---,7n—1] represents the difference of
rhythm vector of the scanned rhythm pattern (of length
n). Let ro = [s1,82, -+,8n—1] represent the difference of

rhythm vector of the target pattern. Since our difference
of rhythm vectors are logarithmic (e.g., a quarter note fol-
lowed by a half note produces 2 in the vector), it would not
be appropriate to use the 1-norm as we have done for the
pitch error. Consider the following example (S=sixteenth
note, E=eighth note, Q=quarter note):

| Scanned Pattern | Target Pattern |
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Figure 3: Rhythm Error Sequence

The numbers between the note values represent the com-
ponents of the difference of rhythm vectors. If we were to
use ||r — rol|, to compute the rhythm error, then in the first
case, the error would be equal to 1 while in the second case,
it would be equal to 0.5. However, there is no reason for
penalizing S followed by E any more than Q followed by
E, when the scanned pattern is E followed by E. The two
errors should be equal. To accomplish this, we define the
rhythm error to be

n—1
max (7, 5;)
r = | - (n—-1
o=\ X ey ) Y
iz

For the above example, our error (in both cases) is equal
to e, = 1. We subtract the term (n — 1) in the above ex-
pression so that a perfect match of the difference of rhythm
vectors produces a zero rhythm error. Finally, the scanning
window gives rise to the rhythm error sequence e, (), an
example of which is shown in Figure 3.

2.4. Overall Error

Having defined pitch and rhythm errors, we can combine
them into one single error using a weighted combination
of both. Let e = 0 -eq + (1 —0) - er be the overall error
and e (i) be the overall error sequence. One way to set
the parameter o would be to ask the user to input his/her
level of confidence in the pitch/rhythm information. For
instance, if the user remembered a complex rhythm pattern,
but did not quite remember the exact pitch pattern, then
he/she might choose to give a low value to o. Another way
to set this parameter, and one which we employ here, is to
make it dependent on the length of the target pattern. If the
length, n, of the target pattern is short (several notes), then
rhythm information contained in the difference of rhythm
vectors is of little significance and should only be used to
distinguish between identical difference of pitch vectors. For
instance, the vector r = [1,1,---,1] occurs very often in
music. So, one possible way of setting o is

100—n
o= A00
100°

ifn<T
ifn>1T

For example, if we do not want the rhythm error to ever
outweigh the pitch error, we could set 1" = 50. Then, if the
target pattern happens to be longer than 50 notes long, o
would stay at 0.5.

2.5. Future Work

A rule for selecting the parameter o, which is the weight
given to the pitch error e;, could be based on the com-
plexity of the rhythm information contained in the target
pattern. The complexity of the difference of rhythm vec-
tor could be expressed in one of many different ways and
this needs to be investigated further. Finally, the recur-
sive median filter used for the assigned key sequence could
be replaced by a variable window length filter, the length
of which would depend on the maximum correlation values
provided by the key-finding algorithm; the effects of apply-
ing such an operation to the maximum correlation sequence
need to be studied. Finally, models that incorporate human
beat perception should be used to improve the robustness
of the rhythm error, in an analogous way to the method
used to compute the pitch error.
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