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ABSTRACT

A novel nonmaximally decimated multirate �lterbank struc-
ture is proposed for blind identi�cation of communication
channels. This structure is shown to be very similar to
a form proposed earlier in the literature. It is presented
that the proposed blind channel identi�cation algorithm
is not sensitive to the characteristics of unknown channel,
including mixed phase and zeros on the unit circle. An
optimal minimum mean square error based linear equal-
izer using the blind channel identi�cation scheme is inves-
tigated. It is shown that the proposed system outperforms
the existing zero-forcing blind equalization algorithms in
literature. It can simultaneously cancel the intersymbol in-
terference (ISI) and suppress the noise enhancement. The
reconstructed signal to noise ratio is maximized by the pro-
posed algorithm. Simulation results show the superior per-
formance and robustness of the proposed blind identi�ca-
tion and equalization scheme.

1. INTRODUCTION

Telecommunication performance through a channel with
multipath or high level of attenuation is severely degraded
by intersymbol interference. It is a common problem in
many communication systems, including wireless mobile
communication applications. The blind channel identi�ca-
tion and equalization is of signi�cant interest in the com-
munications �eld due to its performance insensitivity to the
channel properties. Conventional blind channel estimation
techniques rely on high-order statistics of the stationary
channel output. The second-order cyclostationarity based
approaches were proposed by Xu and Tong which make use
of fractional oversampling [1,2]. Recently, Xia proposed a
new precoding scheme to overcome ISI using nonmaximally
decimated multirate �lterbank as an ideal FIR equalizer [3].
Giannakis forwarded a new �lterbank precoder for blind
channel identi�cation and equalization [5]. In fact, Xia and
Giannakis independently came up with the same precoding
structure from di�erent perspectives.

A nonmaximally decimated multirate �lterbank precoder
/ post-equalizer structure is presented in this paper. It is
shown, that the proposed approach turned out to be the
same as Giannakis' with respect to the problem of blind
channel identi�cation. Additionally, we propose an optimal

MMSE linear FIR combiner as a post-equalizer. It jointly
maximizes the overall signal to noise ratio of blind identi�-
cation and equalization steps.

2. NONMAXIMALLY DECIMATED
FILTERBANK AS A PRECODER / DECODER:

BLIND CHANNEL IDENTIFICATION

Fig. 1 displays a nonmaximally decimated multirate �lter-
bank precoder structure at the transmitter. Similarly, Fig.
2 depicts a nonmaximally decimated multirate �lterbank
decoder / post-equalizer structure. In these two �gures,
# K represents a down-sampling by a factor of K and " N
represents an up-sampling by a factor of N.

In Fig. 1, x(n) is the independent identically distributed
(i.i.d.) information sample sequence. ~x(n) is the precoded
data sequence which is transmitted through the channel.
x̂(n) is the received data sequence at the receiver.

In Fig. 2, the received data samples go through a de-
coder / post-equalizer step. The decoder consists of a non-
maximally decimated �lterbank. x(n) are post-equalized
/ reconstructed data samples. Whenever the transmission
system has perfect reconstruction (PR) property, x(n) will
be the same as input x(n) with some time delay [4].

The intersymbol interference transmission channel model
used in this paper is the baseband discrete model which
combines the e�ects of transmitter shaping �lter, trans-
mission channel and receiver's anti-aliasing �lter. In this
bandlimited ISI channel, there are ISI and additive white
Gaussian noise. It is assumed that the unknown ISI chan-
nel is a linear time invariant (LTI) system. Also assume
that the impulse response of the transmission channel is of
order L, h = [h0 ; h1 ; h2; : : : ; hL]. H(z) is its z transform

function de�ned as H(z) =
PL

i=0 hiz
�i. Without any loss

of generality, we can assume that h0 must not be zero. The
received samples x̂(n) can be expressed as a function of the
transmitted sequence ~x(n) as

x̂(n) =
X
i

~x(i)hn�i + v(n) (1)

where fv(n)g are samples of additive white Gaussian noise.
Using multirate �lterbank theory [4], the channel's trans-

fer function H(z) can be decomposed using polyphase rep-



resentation as

H(z) =

N�1X
i=0

Hi(z
N)z�i (2)

where Hi(z) =
P

n
h(Nn + i)z�n. Let us form blocks of

transmitted and received data samples with a size of N as
~Xk and X̂k, respectively. Then, Eq.(1) can be expressed in
a block form as

X̂k(z) = H(z) ~Xk(z) + Vk(z): (3)

H(z) is an (N �N) pseudo-circulant matrix as

H(z) =

2
66664

H0(z) z�1HN�1(z) � � z�1H1(z)
H1(z) H0(z) � � z�1H2(z)
H2(z) H1(z) H0(z) � z�1H3(z)

� � � � �
� � � � �

HN�1(z) HN�2(z) � � H0(z)

3
77775

In the proposed precoder structure, every block of K infor-
mation data symbols Xk is precoded / pre-equalized into

a block of N transmitted samples ~Xk by going through a
nonmaximally decimated �lterbank precoder at the trans-
mitter. This precoding process can be mathematically ex-
pressed as a matrix operation as

~Xk(z) = F (z)G(z)Xk(z) (4)

where F (z) and G(z) are polyphase matrices of multirate
analysis and synthesis �lterbanks, respectively.

It is well known in multirate �lterbank theory, that
there can not be any perfect reconstruction (PR) solution
for the case of K > N . Therefore, K must be less than
N . A nonmaximally decimated �lterbank with K < N

puts (N � K) zeros as dummy inputs to the channel and
(N � N) H(z) matrix is reduced to Hpart(z)N�K where
Hpart(z)N�K = H(z)(N�K).

At the receiver side, received signal samples form a block
X̂k of size N. Whenever analysis and synthesis �lterbanks
are set with a proper time delay, their polyphase matrices
G(z) and F (z) become identity matrices of size K and N ,
respectively. Then, the received signal is expressed in a
matrix form as

X̂k(z) = H(z)F (z)[G(z);0(N�K)�K]
T
Xk(z) + Vk(z)

= Hpart(z)Xk(z) + Vk(z): (5)

Assume that the following constraints are set as

K < N ;K � L+ 1;N � K + L: (6)

Obviously, any arbitrary integer values of K ; N which
satisfy the conditions of Eq.(6) will generate a constant N�
K matrix Hpart(z). The decoder / post-equalizer section of
the proposed system becomes a constant K�N matrix. It
is much simpler than the Smith form operation used in [3]
which is a K �N polynomial matrix.

Assume that we pick K = L + 1 and N = K + L as
the critical value of (K;N). Then, Hpart(z) is a constant

matrix as shown

Hpart(z)(N�K) =

2
6666666664

h0 0 0 � � 0
h1 h0 0 � � 0
h2 h1 h0 � � 0
� � � � � �
� � � � � 0
hL hL�1 hL�2 � � h0
0 hL hL�1 � h2 h1
� � � � � �
0 0 0 � 0 hL

3
7777777775

Now, let us denote the received signal block of size N as
X̂k(z) and assume that AWGN samples have a variance of
�2n. The information symbols are assumed to have variance
of �2x. The AWGN is assumed to be independent of the
information sequence. The autocorrelation matrix RX̂k(z)

can be derived as

RX̂k(z)
= E[X̂k(z)X̂k(z)

�T ]

= �
2
xHpart(z)[Hpart(z)]

�T + �
2
nIN�N (7)

where E is the expected value and * denotes the conjugate
operation. Using the structure of matrix Hpart(z), The �rst
raw, RX̂k

(1), of autocorrelation matrix RX̂k
is therefore in

the form of

RX̂k
(1) = �

2
xh0

h
h0 +

�2
n

�2xh0
h1 h2 � hL 0 �

i
Hence, h0; h1; h2; :::; hL can be blindly identi�ed from

the autocorrelation function RX̂k
(1) as

ĥ0 = f
1

�2x
[RX̂k

(1; 1) � �
2
n]g

1

2

ĥi =
1

ĥ0�2x
RX̂k

(1; i); 1 � i � L (8)

where SNRin =
�2
x

�2n
is the signal to noise ratio. Assume that

the transmitted signal variance is normalized, �2x = 1, and
SNRin is estimated. Then, all of the channel coe�cients
can be blindly identi�ed. The second part of Eq. (8) is the
same form as presented in [5].

3. OPTIMAL MMSE EQUALIZATION

As we saw in the previous section, the channel parame-
ters can be blindly identi�ed by the proposed nonmaximally
decimated �lterbank based precoder structure. After iden-
tifying the channel coe�cients, the ISI distorted received
symbols can be equalized in order to recover the transmit-
ted signal. The ployphase matrices of nonmaximally deci-
mated multirate analysis and synthesis �lterbank ~F (z) and
~G(z) are set to be identity matrices with sizes of N and K,
respectively. Let's assume that a (K �N) decoder (equal-
izer) matrix Wdecode is used. The decoded or reconstructed
symbol Xk is therefore derived as

Xk(z) = ~G(z)Wdecode(z) ~F (z)X̂k(z)

= Wdecode(z)Hpart(z)Xk(z) +Wdecode(z)Vk(z)

Ek is denoted as the reconstruction error vector, which
is de�ned as the di�erence between the reconstructed data



vector and the transmitted data vector; Ek(i) = x(i)� x̂(i)
for 1 � i � K. Then,

Ek(z) = Xk(z)�Xk(z)

= [Wdecode(z)Hpart(z)� I(K�K)]Xk(z)

+Wdecode(z)Vk(z) (9)

where I(K�K) is an identity matrix of size K. From Eq.
(9), it is easy to observe that the �rst part is due to the
intersymbol interference, while the second part is caused by
the AWGN noise enhancement. The perfect reconstruction
condition implies that there is no ISI such that

Wdecode(z)H(z)F (z)[G(z);0(N�K)�K]
T = I(K�K) (10)

In [3], G(z) is set to be I(K�K). A methodology to �nd
a (K�N) polynomial matrix Wdecode(z) in order to obtain
a perfectly reconstructed x(n) was suggested. It was shown
that the (K �N) polynomial matrix can be derived using
the Smith form operations. This solution is indeed a zero-
forcing decoder or post-equalizer. The noise enhancement
problem of a post-equalizer, which is the second part of Eq.
(9) was not considered. Although one can get the (K�N)
PR FIR polynomial matrix through the computationally
involved Smith form operation, the SNRout degradation of
the system can be very signi�cant.

The equalization scheme of [5] could not suppress any
noise enhancement. It is a zero-forcing PR post-equalization
method. Additionally, G(z) matrix is set to be an identity
matrix of size K. The precoder structures at the transmit-
ter are indeed the same in both [3] and [5].

The Eq. (9) is valid for any integer values of (K;N)
in a multirate �lterbank structure ( analysis / synthesis
�lterbank con�guration ). It is a polynomial relationship in
z. As we select (K;N) satisfying the conditions of Eq. (6),
Eq. (9) becomes a constant matrix relationship.

Due to the interpretation of Eq. (9), we attempt to ob-
tain the optimal MMSE based one tap (K � N) constant
matrix solution to improve SNRout. This MMSE based
nonmaximally decimated �lter bank decoder attempts to
cancel ISI while not enhancing the noise such that the max-
imum value of SNRout after the post-equalizer is achieved.
It is quite similar to the conventional MMSE linear equal-
izer solution.

DenoteWdecode = [W1;W2; :::;WK]TK�N , each rawWi =
[Wi;1;Wi;2; :::;Wi;N ]; and Hpart = [H1;H2; :::;HK ]. Then,
the total ISI plus noise energy is written as

Eerror = E[XT
k (WdecodeHpart � I(K�K))

T (WdecodeHpart

�I(K�K))Xk] + E[V T
k W

T
decodeWdecodeVk ]

=

KX
i=1

�
2
x

KX
j=1

(WiHj � �i�j)
2 + �

2
n

KX
i=1

WiW
T
i (11)

Now, we want to obtain an optimal Wdecode(i; j) such that
ISI plus noise is minimized to get a maximum SNRout.

Since Eerror =
PK

i=1
Eerror(i), and Eerror(i) is a function

of weight vector Wi only. We can derive optimal weight
vector to get minimum Eerror(i) as

Eerror(i) = �
2
x

KX
j=1

(WiHj � �i�j)
2 + �

2
nWiW

T
i (12)

To minimize Eerror(i), we take a derivative of the equation
above. After some algebraic operations, the optimal weight
vector Wi is written as

W
opt
i =

"
(

KX
j=1

HjH
T
j ) +

�2n

�2x
IN�N

#
�1

Hi (13)

Then, the maximum SNRout is expressed as

SNRopt
out =

KPK

i=1
�2x
PK

j=1
(WiHj � �i�j)2 + �2nWiWT

i

(14)

where Wi; 1 � i � K, are the optimal weight vectors. The
optimal MMSE based nonmaximally decimated �lterbank
post-equalizer maximizes the SNRout at the output of de-
coder/equalizer. It is shown that it outperforms the zero-
forcing PR equalizer based system used in [3] and [5]. This
improvement makes the �lterbank based precoder structure
perform successfully for the blind identi�cation and equal-
ization of unknown channels.

4. SIMULATIONS AND PERFORMANCE
COMPARISONS

In this section, we perform unknown channel identi�cation
and equalization using the proposed algorithm for a few
channel types.

The unknown linear time invariant channels, which are
going to be investigated, are

(i) The channel h = 1
9 [1 ; 2 ; 2:5 ; 2 ; 1] with four zeros

on the unit circle as used in [3]. 500 BPSK symbols, fx(n)g
are generated and transmitted through the unknown chan-
nel. In this case, the order of unknown channel is 4. We
select the critical values ofK = 5, N = K+L = 9. Hpart(z)
becomes a constant matrix.

Using the proposed blind channel identi�cation algo-
rithm, 100 and 500 Monte Carlo simulation runs are per-
formed for an SNRin of 20 dB. The estimated channel coef-
�cients, ĥ, are found as [0:111 ; 0:225 ; 0:277 ; 0:222 ; 0:103],
and [0:111 ; 0:223 ; 0:277 ; 0:221 ; 0:110]. It is observed that
the blind identi�cation is performed well. The coe�cient
h0 is estimated directly which is not the case in [5].

After a successful channel identi�cation step, the chan-
nel equalization is performed. The channel equalization is
performed using the new proposed optimal MMSE based
linear FIR combiner. The overall reconstruction signal to
noise ratio after post-equalization is displayed in Fig. 3. It
is shown that the optimal MMSE based FIR equalizer out-
performs the zero-forcing equalizer. It is much more robust
when SNR is low.

(ii) The channel with 7 zeros at 0:2;�1:5;�0:5j; 0; 2783�
j � 0:3488, h = [1 ; �0:757 ; �1:690 ; 1:473 ; �1:183 ; 0:505 ;
�0:175 ; 0:022] in [5]. We could select any integer K �
8;N � K+7. For a simple demonstration we pick (K;N) =
(8; 15). In this case, Hpart(z) becomes a constant matrix.
500 and 1000 Monte Carlo simulations are run to blindly
estimate the unknown channel. Assume that the SNRin

is 20 dB, the estimated channel coe�cients, ĥ, are found
as [0:999 ; �0:754 ; �1:691 ; 1:454 ; �1:170 ; 0:520 ; �0:189 ;
0:045] and [0:999 ; �0:754 ; �1:691 ; 1:468 ; �1:185 ; 0:508 ;
�0:176 ; 0:021], respectively.



Using the identi�ed channel coe�cients, the optimum
MMSE based FIR equalization is performed. The overall
reconstruction SNRout is displayed in Fig. 4. It is seen
that the proposed optimal MMSE based post-equalizer is
much more robust than the zero-forcing equalizer proposed
in [5].

5. CONCLUSIONS

In this paper, an e�cient nonmaximally decimated multi-
rate �lterbank structure is proposed for the blind identi�-
cation of unknown transmission channels. An optimal min-
imum mean square error based linear equalizer using the
blind channel identi�cation scheme is investigated. Simu-
lation results show that the performance and robustness of
the proposed blind identi�cation and equalization scheme
are superior to the scheme proposed in [3] and [5].
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Figure 1: The proposed Nonmaximally Decimated Filter-
bank Based Precoder / Pre-equalizer structure for Blind
Channel Identi�cation and Equalization.
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Figure 2: The proposed Nonmaximally Decimated Filter-
bank Based Decoder / Post-equalizer structure for Blind
Channel Identi�cation and Equalization.
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Figure 3: SNRout performance of the proposed optimal
MMSE based equalizer and zero-forcing equalizer used in
[5] vs SNRin. For (5,9) case of transmission channel given
in [3].
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Figure 4: SNRout performance of the proposed optimal
MMSE based equalizer and zero-forcing equalizer used in
[5] vs SNRin. For (8,15) case of transmission channel given
in [5].


