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ABSTRACT

We have devel oped speech recognition middlewareon aRISC
microprocessor which has robust processing functions
against environmental noise and spesker differences. The
speech recognition mddleware enables developers and users
to use a speech recognition process for many possible speech
applications, such as car navigation systems and handheld
PCs. Inthis paper, we report i mplementation issues of speech
recognition process in middleware of microprocessors and
propose robust noise handling functions using
ANC(Adaptive Noise Cancellation) and noise adaptive
models. We a so propose anew speaker adaptation al gorithm,
in which the relationships among HMMs(Hidden Markov
Models) transfer vectors are provided as a set of pre-trained
interpolation coefficients. Experimenta eval uations on 1000-
word vocabulary speech recognition showed promising
results for both robust processing functions of the proposed
noise handling methods and the proposed speaker adaptation
nmet hod.

1. | NTRODUCTI ON

Recently, quite a few efforts have been made to redize
sophisticated user interfaces which have speech processing
techniques. Especially, speech recognition technology has
mede a great progress, and many commercialy available
products have been announced in these days. However, many
technical problems arestill existing to use speech recognition
systems in rea applications. Robustness of speech
recognition in noisy environment and robustness for different
speakers' variations are main and key issues. Also, how to
implement speech recognition process is another important
issue to meke speech recognition easy to use and to reaize
speechecogni tiappl i cati snscessful ly.

First, regarding inmplementation issues, we have developed
speech recognition middleware on RISC microprocessors as
one of SuperH Speech Middleware functions. Second, to
realizerobust speech recognition under environmental noise,
meny approaches such as spectra subtraction (SS)
methods[1], Adaptive Noise Cancellation(ANC)[2], and
speech nodel adaptation techniques based on HMMs
deconposition have been proposed[3][4]. In this paper, we
have nodified these techniques to redize robust speech
recognition mddleware. Robust speech detection using ANC
method have been inplemented and the speech model
adaptation by adding environmental noise havebeen used in
the middleware developed. Finaly, speaker adaptation
mechanism has been inplemented in the middleware by
opti m zi pgocests nanddat a/ presarenor ysi zes.

In this paper, we report detailed specifications of SuperH
Speech Middleware and inplementation results of the

proposed robust processing functions for environmental noise
and speaker difference. The calculation speed and the memory
sizeare limited in themiddleware, but we have achieved real-
timeecognitiad@000wor dswi t thi ghr ecogni tirat e.

2. Super HSPEECH M DDOLBEWARE
2.1 M ddl ewar &speci fi cati ons

Middlewareis akind oflibrary set which connects hardware
and user applications. We have devel oped speech recognition
middlewareon a RISC microprocessor. The mddleware helps
to meke an application which has the speech recognition
function. Table 1 shows the specification of our RISC

microprocessor Super H® Risc Engine (SH-3) and the speech
recognition middleware. The operation speed and the menory
size are limited. We are using phonemic speech segments as
HMM units. To reduce calculation burden, semi-continuous
HMMs and tied mixtured 3-dimensional nodels have been
used. Moreover, we introduced several approximation search
techniquesto savethe calculation time. Thus, the middleware
achieved the performance of 93% recognition rate for 1000
wor dvocabul amyt honl y0. Gsecond esponda ne.

Tabl el: Speci fi cataf@uper FB(RM ddl ewar e

item specification

Phonemic Speech Units
/ Semi-continuous HMM

60 MHz

Speech Model

Operation Speed
External Bus 60 MHz / 32 bit
Sampling 11.025 kHz / 16 hit

Frame Lengthl / Period |20 ms / 10ms

Processing Time 14 ms / frame

Response Time ~ 0.6 sec

Vocabulary Size 1000
256 kByte (phonetic model etc.)
500kByte (work)

Memory Size

2. 2M ddl ewar éAr chi t ect ur e

Figure 1 shows an example of the middleware architecture
implemented on a SuperH board. The SH-3 has 60MHz cycle
process power. Thefundamental middlewarewhich has 1000-
word speech recognition ability needs 256kByte ROM(Read
Only Memory) as data/program menory and 560kByte
RAM(Random Access Memory) as work memory. The input
speech is digitized by an 11.025kHz-sanpling A/D converter,
and processed by the middleware via. interface bus. Finally,



therecognized results are shown to display termina's through

aRS232Cl nterface.
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convolution process, the following calculation is done to
extranbi sadapt edMVs i nt hd i neapect r wonmai n.

R = S+ k(SNR)[N (1)

where, S, N, and R show clean HMMs, noise HMMs and
adapted HMMs in linear spectrum domain, respectively. k is
multiple parameter determined by Signal-Noise-Ratio(SNR) of
environments. The combined HMMs are extracted by Log
Transform and Inverse Cosine Transform from R of the
equation(1l).

Fi gur &: Exanpl efSyst erArchi t ecture

3. NO SE HANDLI NG METHCOD
3. 1ANC( Adapti véNoi seCancel | ati on)

The ANC is used for anoise reduction techniquewhich makes
speech interval detection easy and precise. Figure 2 shows a
block-diagram of ANC for the speech interva detection. The
ANC needs nornmelly two microphones, one for speech data
and the other for noise data. In the middleware developed, a
300-tap adaptivedigita filter has been used to reduce speech
i npudat ahi chi ncl udemi seat a.
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Fi gur @: Bl ock- di agrafNC f orSpeech nt er val
Det ecti on

3. 2 Noi seAdapt edSpeechHMVE

Many noise adaptation techniques based on deconposition
and conposition of speech and noise HMMs have been
proposed and showed promising results[3][4]. We have
modified these techniques and conbined with the ANC
speech detection technique to realize robust and concise
speechecogni t imrddl ewar e.

The noise adapted HMMs are extracted by the processing flow
shown in Figure 3[4]. Noise HMMs are calculated by the
environmental noise and added to the stored HMMs which
has been created using clean speech data. To add noise HMMs
to the clean HMMs, two transform processes of cosine
transform and exponentia transform are used. In the

clean speech Linear
Spectrum
HMMs—»  Cosine N
noise Transform Transform L
HMMs
Cepstrum Log Spectrum Convolution
domain domain
combined, InvCos Log
HMMs Transform ¢ Transform )
Linear

Spectrum

Fi gur 8: Noi seAdapt at i &h ow

Figure 4 shows experimental evaluation results of the noise
adaptation HMMs. We used two types noise, namgy car
running noise and car air conditioner noise as noise
envi ronments.
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A speech recognition task is Japanese 1000 railway station
names. Four types of SNR conditions were evaluated using
1000 station names uttered by 28 speakers. The air
conditioner noise cases showed lower recognition results
than car running noise cases. In car running noise cases,
almost half of errors have been improved using the proposed
conmbination method of ANC speech interva detection and
noi sadapt edMVs.

4. SPEAKER ADAPTATI ON

Speaker adaptation is one of the adaptation schemes, where
the speaker independent(SI) HMMs are modified to the
speaker adapted(SA) HMMs using small amount of adaptation
speech data The SI HMMs include many models
corresponding to many types of the phonetic units. However,
the adaptation datainclude only few model s, so the problemis
how to adapt those models that do not appear in the
adaptation data. Moreover, even the modelsthat appear in the
adaptation data are not adapted correctly, because there are
not enough data for each model. For these problems, many
interpolation and snoothing techniques have been
proposed[5][6]. All of these techniques are based on the
assunption that the transfer vector field should be smooth.
This assunmption hel ps the good estimeation of transfer vectors,
but it brings thelimt ofthe preci se estimation. We propose a
new speaker adaptation al gorithm, which does not assume the
smoothness of the transfer vector field. We prepare many
reference speaker Dependent(SD) HMMs, and caculate
correlation between each other. We use this information,
instead of the snpothness assunption, to estimate unknown
and uncertain transfer vectors. Similar approach was applied
to the word recognition system based on dynamic time
war pi ng DTW by Fur ui 7] .

4. 1 nt er pol ativart hPre-trai ned
Coefficients

Figure 5 shows a block-diagram of the proposed speaker
adaptation algorithm named Interpolation with Pre-trained
Coefficients(IPTC)[8]. The adaptation speech input comes
with the corresponding adaptation word. The speechinput is
transformed to the feature vectors by LPC analysis, and then
metched with the adaptation word. In the matching process,
thetime series of feature vectors are segmented into phonetic
uni tasi ngl HWs andVi t er ail gorit hm

speech
Olnput- LPC matching | _|interpolation R
analysis|” |& training [~ |& re-estimatign []
A interpolation &|
adaptation Costicients.
words
© »| extracting
Ceference SD HMMS) correlation
with transfer vectors information

Sl: Speaker Independent
SD: Speaker Dependent
SA: Speaker Adapted

Fi gur &: Bl ock- di agrafi@peakeAdapt ati & gorithm

After matching, esch HMM nodel is trained using MAP
estimation. To reduce the calculation time and to avoid the
over-learning, only the mean vectors of the Gaussian
probability density are trained, and the covariance of Sl
HMMs are used in SA HMMs. In the semi-continuous HMM
of our system, each HMM has two states and each state has
three Gaussian mixtures, and all of those mixtures are tied to
meke HMM codebooks. Therefore, the mean vectors of those
HMM codebooks are adapted. A transfer vector isdefined as a
di f f er ebe¢ weemeanvect orbef or@ndaf t @rr ai ni ng.

Vpi:Iupi_lin (2)

where Vpi is the i-th element of the transfer vector of the p-th
HMM codebook. 2, and py; correspond to the mean vectors
before and after training. Parallel to this process, correlation
informetion among transfer vectors is extracted from reference
SD HMMs. Correlation information is represented as linear

conbi nati onef fi ci éotisnt er pol atdruin e- est i mati on.

After metching and training procedures, HMM codebooks are
divided into two groups; HMM codebooks that appear in the
adaptation data (trained codebooks) and HMM codebooks
that do not appear in the adaptation data (untrained
codebooks). For untrained codebooks, interpolation is carried
outusi ng he ol | owi egjuati on.

V. = cv ©)

pi a0 N(p pa” i

where N(l)(p) isthe set of trained neighbors of the p-th HMM

codebook, and C(l)pq is the interpolation coefficient of g-th
HMM codebook. To avoid errors originated in datasparsity, a
re-estimetion procedure for all HMM codebooks follows the
i nt er pol atgrarcedur e.

= (R)
vpi_qm%m (CRV,+V ) /2 (4)

where Vpi is thei-th element of the trained or interpolated
transfer vector, and V'pi isthe i-th element of the re-estimated

transfer vector. The neighbor set N(R)(p) includes both

trained and interpolated HMM codebooks, and c( R)pq is the
re-esti mation coefficient of g-th HMM codebook. Equation (4)

becomes the same as that of the VFSin [5] ifthevalues c( R)pq
are calculated only from the distances between HMM
codebooks. For simplicity, weadd the original transfer vector
and the estimated transfer vector with the same ratio, but the
ratimanbechangedfnecessary.

In our agorithm the coefficients C(|)pq and C(R)pq are
calculated beforehand using transfer vectors of reference SD
HMMs. That is the reason why we named the proposed
agorithm "Interpolation with Pretrained Coefficients
(IPTC)." We prepare 36 reference SD HMMs from36 speakers,
whi char emadeusi n@16phonet i cabbyancesbr ds.

4.2 Experi ment atval uati dResul ts

To evaluate the performance of the adaptation, the proposed
algorithm IPTC was compared with MAP-VFS on the
recognition task of 1000 words. The vocabulary consists of
Japanese railway station names. Each word is transformed to



the series of HMM states. The number of HMM states varies
from18 (3 phonemes) to 86 (20 phonemes), and theaverage is
3954 (8.38 phonemes). Figure 6 shows the average
recognition rate (circles) and the recognition rate for the
speaker whose recognition rate for the S| HMMs s the worst
in the six speakers (squares). In the experiment, 300 of 1000
utterances were picked up for each of six speakers. 50 of them
are used as the adaptation utterances, and 250 are used for test.
Theaverageduration length ofthose 50 wordsis 42.96 states
(9.24 phonemes). In one, two, and five word adaptation, 50
adaptation utterances aredivided into 50, 25, and 10 subsets
respectively. In 10, 20, and 30 word adaptation, 50 adaptation
utterances are divided into 10 overlapping subsets, such as
#1~#10, #6~#15, #11~#20, etc. (# denotes the word No.) The
recognition rate for aspeaker is calculated by averaging over
al of those subsets, wherethe same testing dataare used. The
recognition rate for all speakers is calculated by averaging
over six speakers. As shown in Figure 6, the recognition rate
of IPTCis lower than MAP-VFS when adapted by oneor two
words. However, IPTC brings higher recognition rate when
adapted by nmore than five words. Since interpolation and re-
estimetion procedures tend to depend on fewer neighboring
HMMs in IPTC than in MAP-VFS, wrong adaptation by the
small number of adaptation words may propagate in the
interpolation and re-estimation processes. The adaptation by
IPTC reduces 28.5% of recognition errors using 10 adaptation
words, and 52.7% using 50 adaptation words, while MAP-
VFSreducesnl y22. 9%nd38. 4%especti vel y.
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Figure6: Adaptation Evauation Results. Three lines
on top represent average of six speakers, and threelines
on bottom represent the speaker whose recognition
rateisthe worst in thesix. IPTC results areplotted by
bl aclkkndVAP- VFS regl t ar el ot t dy whi t e.

The adaptation performance is remarkable for the worst
speaker, where 32.6% arereduced using 10 words and 58.6%
ar @ educedsi nG0Owor ds(23. 1%nd43. 1%y MAP- VFS)

5. SUWARY

This paper described a new implementation of speech
recognition as middleware on RISC microprocessors. To
realize robust processing functions against environmental
noise and speaker differences, we have devel oped robust noise
handling  techniques using ANC(Adaptive Noise
Cancellation) and noise adaptive nodels. We also have
proposed a new spesker adaptation agorithm named
Interpolation with Pretrained Coefficients(IPTC). The
adgorithm uses interpolation and re-estimation coefficients
which are calculated from the transfer vectors of the reference
SD HMMs. The proposed robust processing techniques have
been inplemented as a part of the speech recognition
middleware on RISC microprocessors. Experimenta results
have shown that the developed mddleware compares
f avor abiwt ot hespeechecogni t isyst ens.
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