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ABSTRACT

We present the architecture of a programmable FIR filter for
use in DSP and communication applications. A filter with this
architecture is capable of running a wide variety of single-rate
and multirate filtering algorithms with low latency. Flexibility is
achieved by distributed register files that store input data and filter
coefficients. The functionality of the filter is programmed by a set
of pipelined control signals that are independentof the filter length.
We demonstrate how to generate these control signals for a variety
of configurations. In addition to its flexibility, the architecture is
scalable, modular, and has no broadcast signals, making it ideally
suited for VLSI implementations.

1. INTRODUCTION

Finite impulse response (FIR) filters are important blocks in digi-
tal signal processing (DSP) and communications systems. These
filters are used to perform a wide variety of tasks such as spec-
tral shaping, matched filtering, noise rejection, channel equaliza-
tion, wavelet decompositions/reconstructions, subband decompo-
sitions/reconstructions, etc.

Reconfigurability can be obtained in programmable FIR fil-
ters by using variable-length delay lines [1] and register files [2].
Using register files results in reduced data movement in the filter
compared to variable-length delay lines, resulting in lower power
consumption. Whereas the architecture in [2] only supports FIR
filters followed by decimation, this paper describes an architecture
that can reconfigured to implement a wide variety of single-rate
and multirate programmable FIR filters, and we demonstrate how
to derive the control signals for the architecture. The architecture
has the speed/area/power advantages of a custom filter implemen-
tation, and can be used in applications where latency is critical,
such as adaptive filters. The proposed architecture also has prop-
erties which are desirable for VLSI implementation, namely, it is
scalable, modular, and has only local interconnection of control
and data signals.

2. ARCHITECTURE DESCRIPTION

This section provides a top-down description of the hierarchical
FIR filter architecture.

At the highest level, the filter consists of I identical basic
filter (BF) blocks cascaded together as shown in Figure 1(a). The
BF blocks are controlled by the signals DW (Data Write), DA
(Data Address), and CA (Coefficient Address). These signals
originate from a single source and are distributed to the BF blocks

in a pipelined manner. At the output of the architecture is an
accumulator which sums its inputs for a number of consecutive
clock cycles which is controlled by the signal AC (Accumulator
Control).

Each BF block consists of J identical multiply-add (MA) units
cascaded together as shown in Figure 1(b). In particular, Fig-
ure 1(b) shows the basic filter block BFi which uses the control
signalsDWi, DAi, and CAi.

Each MA unit consists of two register files, a multiplier, and
an adder, as shown in Figure 1(c). In addition, each MA unit is
controlled by the five signals CRA (Coefficient Read Address),
DLT (Data Look-Through), DWE (Data Write Enable), DRA
(Data Read Address), andDWA (Data Write Address).

The two register files labeledRFC andRFD in Figure 1(c) are
used to store filter coefficients and data samples, respectively [2].
The register fileRFD has a write port (W), a read port (R), and four
control signals, namely, write enable (WE), read address (RA),
write address (WA), and look-through (LT ). For any given clock
cycle, ifWE = 1, the data at the write port is written to the location
specifiedby the write addressWA. The data at the read port is read
from the location specified by the read address RA. The special
case when WE = 1 and RA = WA is governed by the look-
through signal, LT . If LT = 1 and the read address is the same
as the write address, the value at the write port is passed directly to
the read port (look-through); if LT = 0, the value at the read port
is the value that was previously stored in the location specified by
the read address (master-slave action). Parts (b) and (c) of Figure 1
show that LT = 1 for the data register file RFD in MA1 in each
BF block, and LT = 0 for RFD in MA2;MA3; : : : ;MAJ in
each BF block.

The coefficient register file RFC shown in Figure 1(c) has a
read port (R) and a read address (RA) control signal. Because the
coefficients can be loaded into this register file off-line, the ports
used to write data to the register file, namelyWE, WA, andW are
not shown. The coefficient register files do not use look-through.

With a slight modification of the control signals, we can reduce
the latency of the architecture. This modification requires separate
control for the signals DWE, DWA, and DRA in multiply-add
unitMA1 in basic filter blockBF1. These separate control signals
are denoted as FDWE, FDWA, and FDRA, and are shown
in Figure 2. The examples in Section 3.2 use this feature of the
architecture.

The critical path of the architecture depends on the parameter
J . In each BF block, there is a combinational path through a
multiplier the adders in MAJ ;MAJ�1; : : : ;MA1. Assuming
that these J adders are arranged as a tree as in [2], the propagation
delay through the BF block is TM +TA dlog2(J + 1)e, where TM
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Figure 1: (a) The proposed architecture consists of I cascaded basic filter blocks. (b) The basic filter block BFi consists of J cascaded
multiply-add units. (c) A multiply-add unit consists of a data register file, a coefficient register file, a multiplier, and an adder.
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Figure 2: The basic filter block BF1 showing the separate control
signals FDWE, FDWA, and FDRA which are used to reduce
the latency of performing FIR filtering.

and TA are the delays through a multiplier and adder, respectively,
and dxe is the ceiling ofx, which is the smallest integer greater than
or equal to x. The output of the BF blockBF1 passes through the
accumulator (see Figure 1(a)), so the critical path of the architecture
is TM + TA(log2(J + 1) + 1). The parameter J can be varied to
adjust the critical path given the sample rate, data and coefficient
wordlengths, process technology, and the number of coefficients
time-multiplexed to each multiplier.

3. DERIVATION OF CONTROL SIGNALS

The proposed architecture requires the control signals DW , DA,
CA, AC , FDWE, FDWA, and FDRA for each desired filter-
ing algorithm. This section describes a methodology for determin-
ing these control signals followed by some examples.

3.1. Methodology

The steps for determining the control signals for an FIR filter are
as follows:

1. Re-organize the filter computations using polyphase struc-
tures [3] and associativity.

2. Retime [4] and schedule [5] the algorithm. The primary goal
of this step is to choose a retiming and scheduling solution
which maps the algorithm to the proposed architecture. The
secondary goal is to maximize the hardware utilization of
the architecture.

3. Fold the architecture [6], [7].

4. Map the registers and multiplexers in the folded architecture
to the register files in the architecture described in Section 2
so the pipelined control structure in Figure 1 can be used.

3.2. Examples

This section provides examples of deriving the control signals for
the proposed architecture for I = 2 andJ = 4. We assume that the
data register files RFD can each store four data samples, and the
coefficient register filesRFC can each store four filter coefficients.
Functions that can be implemented on this hardware are listed in
Table 1. The values of K , L, and M in this table are defined in
Figure 3, where y0[n] =

P
K�1
k=0

h[k]x0[n� k] and the multirate
blocks are described in [3].

H(z) Mx(n) y(n)L
x (n)’ y (n)’

Figure 3: An FIR filter with an expander and decimator. The block
H(z) computes y0[n] =

P
K�1
k=0

h[k]x0[n� k].

In the first example, the architecture is configured to implement
filter F8 in Table 1. Since the hardware is clocked at four times
the input sample rate, four coefficients are time-multiplexed to a
single multiply-add unit.
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Figure 5: The folded architecture which results from folding the DFG in Figure 4.

Table 1: Filters that are implemented using the parameters assumed
in Section 3.2. The values K , L, and M are defined in Figure 3.
The architecture uses clock period T .

Label K L M
Input
Period

Output
Period

F1 32 4 1 4T T

F2 24 3 1 3T T

F3 32 2 1 4T 2T
F4 16 2 1 2T T

F5 8 1 1 T T

F6 16 1 1 2T 2T
F7 24 1 1 3T 3T
F8 32 1 1 4T 4T
F9 16 1 2 T 2T

F10 32 1 2 2T 4T
F11 24 1 3 T 3T
F12 32 1 4 T 4T

A data-flow graph of the algorithm after reorganization, retim-
ing, and scheduling is shown in Figure 4. The folding set cardinality
for this DFG is N = 4, i.e., the folded architecture executes each
node in this DFG exactly once every four clock cycles. Folding
this DFG using the techniques described in [6] results in the folded
architecture in Figure 5. Note that this folded architecture has the
same form as the proposed architecture in Section 2 except that
registers and multiplexers are used instead of register files.

The next step is to map the delays and multiplexers in the
folded architecture to register files. This is demonstrated for the
portion of the folded architecture in Figure 5 that is enclosed by the
dotted lines. This portion is drawn in Figure 6(a). Figure 6(b) uses
a life-time chart [8] to show how data moves through Figure 6(a)
from time unit 0 to time unit 31. Each horizontal line represents one
of these 32 time units, and the vertical lines represent the variables
that must be stored. The number of live variables is given for each
time step. Notice that the maximum number of live variables for
any time step is 4, meaning a register file with four storage locations
is sufficient. At the top of each vertical line, the register location
(chosen from fR0;R1;R2; R3g) is indicated for that variable.
The time units during which the variables are output to OUT1 and
OUT2 are denoted using ‘o’ and ‘x’, respectively, on the vertical
lines. The write address, the read address for OUT1 (labeled
“read1 address”), and the read address for OUT2 (labeled “read2

address”) are shown for each time step. During time steps when
reads are performed for OUT1 and OUT2, the same read address
is used for both of the reads, meaning they can be implemented
using a single read port, which agrees with the architecture shown
in Figure 1. The last three columns in Figure 6(b) provide sufficient
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Figure 4: The DFG for Example 1 after reorganization, retiming,
and scheduling. The notation (Snjm) is from [6] and indicates
scheduling information which is used during folding.

information for addressing the register file that replaces the portion
of the architecture shown in Figure 6(a).

The control signals for the architecture can be determined after
mapping all of the delays and multiplexers to register files. The
control signals for this example are given in Table 2. Since the
control signals are periodic with period 16, the control signals
for any time step can be determined by substituting the appropriate
value of l into the table. The i-th instance ofRFC in the architecture
stores the coefficientsh(4i+3), h(4i+2),h(4i+1), andh(4i+0)
in locations 0, 1, 2, and 3, respectively, for i = 0;1; : : : ; 7.

The secondexample is filter F12 in Table 1. The control signals
for the proposed architecture to implement this filter are given in
Table 3.

The third example is filter F1 in Table 1. The control signals
for the proposed architecture to implement this filter are given in
Table 4.

4. CONCLUSIONS

A programmable FIR filter architecture has been presented. By
supplying appropriate control signals, a wide variety of single-
rate and multirate FIR filters can be implemented using the same
hardware. Because it is scalable, modular, and has no global data
or control signals, the architecture is well-suited for VLSI imple-
mentation. The critical path of the architecture can be adjusted
by changing the number of multiply-add modules in a basic filter
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Figure 6: (a) The portion of Figure 5 enclosed in the dotted polygon,
and (b) its lifetime chart and register mapping.

block. We also demonstrated how to generate control signals for
this architecture.

The look-through gives a slight speed penalty compared to
[2], but the low-power characteristics remain the same. Therefore,
we have shown that a high degree of flexibility can be achieved
with negligible speed/power/area penalty compared to a custom
application-specific filter implementation. A VLSI implementa-
tion of the proposed architecture is well-suited as a hardware ac-
celerator on a general-purpose DSP.
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