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ABSTRACT

We present a new method of Speaker Adapted Training (SAT) that
is more robust, faster, and results in lower error rate than the pre-
vious methods. The method, called Inverse Transform SAT (IT-
SAT) is based on removing the differences between speakers be-
fore training, rather than modeling the differences during training.
We develop several methods to avoid the problems associated with
inverting the transformation. In one method, we interpolate the
transformation matrix with an identity or diagonal transformation.
We also apply constraints to the matrix to avoid estimation prob-
lems. Finally, we show that the resulting method is much faster,
requires much less disk space, and results in higher accuracy than
the original SAT method.

1. INTRODUCTION

Many researchers have developed various methods for speaker adap-
tation e.g., [3] [5] [7]. These methods can adapt a speaker inde-
pendent (SI) model so that it better models a particular test speaker.
Given that the SI model will always be used with speaker adapta-
tion, we can find a better “compact” SI model that is most suited
to that purpose. We call this Speaker Adapted Training [1]. The
method first finds the transformation from the SI model to each
of the training speakers, and then finds a new SI model that would
increase the likelihood of the training data, given the speaker trans-
formations for all the speakers. This method has been shown to in-
crease the benefit for speaker adaptation. Unfortunately, it is very
expensive (both in computation and storage). In addition, the ben-
efit over adapting the SI model is small.

A somewhat more intuitive approach to the problem is to re-
move the differences between speakers before training on their
speech. This can be done in five steps on one speaker at a time:
1. estimate the SD model 2. estimate the speaker transforma-
tion, 3. invert the speaker transformation, 4. apply the inverted
transformation to the SD model, 5. accumulate the inverted model
statistics in the usual way. A direct implementation of this proce-
dure suffers when the transformation can not be inverted reliably,
for example, when the amount of training data for a transforma-
tion is insufficient. We present several solutions to the estimation
problems. In Section 2 we review the basic SAT method. Section
3 describes the ITSAT procedure. We show in Section 4 that the
initial ITSAT method makes the same improvement as SAT but is
far more efficient. We extend the ITSAT through the use of diag-
onal transformations in Section 5, present results in Section 6, and
describe a new multi-stage adaptation process in Section 7.

2. ORIGINAL SAT METHOD

Before we present the details of the Inverse Transform SAT, it
would be useful to describe briefly the original SAT parameter es-
timation.

As in [1], we assume a set of continuous density HMM tri-
phone models withN states, where thej-th state observation den-
sity is assumed to be a mixture of Gaussians of the form

bj(ot) =

KX

k=1

cjkN (ot ; �jk ;�jk ) (1)

whereot is thed-dimensional observation vector at time framet,
K is the number of mixture components,cjk is the mixture coef-
ficient for thek-th mixture in statej, and(�jk;�jk) are the mean
vector and the covariance matrix of the Gaussiank-th component
of thej-th state distribution.

The SAT re-estimation process is depicted in Figure 1. The
feedback lines indicate that the process can be iterated, until con-
vergence to the optimal point is obtained. Each iteration of SAT
consists of two phases, the adaptation-training-estimation (ATE)
phase, and the synchronization (SYNC) phase.
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Figure 1: Block diagram of original SAT method

In the i-th iteration of SAT, the SI model�i�1 from the prior
iteration is adapted to each of the speakers in the training set. For
the first iteration (i = 1), �0 is initialized to a sufficiently trained
SI model. During the adaptation phase, the SI means are mapped
to the unknown speaker dependent (SD) means by a linear regres-



sion transformG(s)
i�1 =

�
W (s); �(s)

�
as follows

�
(s)
jk = W

(s)
�jk + �

(s) (2)

whereW (s) is a d � d transformation matrix and�(s) is an ad-
ditive bias vector. The indexi � 1 in G

(s)
i�1 indicates that this

transformation is estimated from the adaptation data during the
prior iteration of SAT, using the Maximum Likelihood Linear Re-
gression (MLLR) method [5]. For the first iteration of SAT,G(s)

0

is initialized to the identity transform (W (s) = Id and�(s) = 0) 1.

The adaptation of�i�1 to speakers produces a SD model
�
(s)
i�1 which in turn is used as the seed model for training on the

speaker data using the forward-backward algorithm [2]. The re-
sulting model�(s)i together with the original SI model�i�1 are
fed forward to the estimation stage, where the transformationG

(s)
i

is estimated using MLLR. This completes the ATE phase of the
SAT process.

The SYNC phase is not executed until models�
(s)
i and trans-

formationsG(s)
i have been obtained for all the speakers in the

training set, that is, the original SAT method requires for each
speakers the storage of the parameters of its model�

(s)
i and its

transformationG(s) = (W (s); �(s)), in order to re-estimate the
means and variances of the SI model. This is a significant require-
ment of disk space and I/O operations per speaker. In the next sec-
tion we show how the ITSAT method reduces these requirements
with no significant loss in performance.

3. INVERSE TRANSFORM SAT

The Inverse Transform SAT (ITSAT) is depicted in Figure 2. The
first thing that one can notice from the schematic diagram is the
lack of a synchronization stage, which is the main advantage of
this method. Each iteration of ITSAT performs exactly the same
steps as the ATE phase of the original SAT method, but as soon as
the speaker transform has been estimated, it is inverted and applied
to the means of the speaker model�

(s)
i , producing the model̂�(s)i .

The transformed means are accumulated over all the speakers in
the training, producing the new SI model�i.

In particular, we compute an inverse transformG(s)
i

�1
= (Ŵ (s),

�̂(s)), from the SD model to the SI model, and we apply it to the
means as follows

�̂
(s)
jk = Ŵ

(s)~�
(s)
jk + �̂

(s) (3)

where�̂(s)jk and~�(s)jk denote the transformed mean and SD mean of
thek-th Gaussian component of thej-th state distribution, respec-
tively.

The transformed means are accumulated and the SI model pa-
rameters are re-estimated as follows

�jk =

PS

s


(s)
jk �̂

(s)
jkPS

s


(s)
jk

(4)

1In what follows, we shall assume that the speaker specific transfor-
mation consists of a single regression matrix for simplicity. It is possible,
however, to define regression classes and associate a regression matrix with
each class.
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Figure 2: Block diagram of ITSAT method
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where
(s)jk is the expected number of times the system is in statej

using thek-th mixture component2.

3.1. Inversion of transform.

In order to compute the inverse transformG(s)�1

i we need to invert
the matrixW (s). Experiments showed thatW (s) may be ill con-
ditioned for some speakers, so even small roundoff errors that can
occur during the inversion of the matrix can have a drastic effect
on the computed inverse, and consequently, on the transformed
means�̂(s)jk . One way to alleviate this problem is to smooth the

matrix W (s) before computing the inverse. For example,W (s)

can be interpolated with thed � d identity matrixId to obtain a
smoothed matrix~W (s) as follows

~W (s) = �Id + (1� �)W (s) (6)

where0 � � � 1 is a parameter that depends on the conditioning
of W (s) (it is an increasing function of the conditioning ofW (s)).

In section 5, we show that the robustness of the inverse trans-
form is very crucial to the success of the ITSAT method, and we
propose the use of robust diagonal transformation matrices.

4. COMPARISON BETWEEN ORIGINAL SAT AND
ITSAT

To compare the disk space requirements between the two meth-
ods, assume that we haveN states withK Gaussian mixture com-
ponents per state,d-dimensional feature vectors, and a total ofS
speakers in the training data. Each speaker model hasNK Gaus-
sian mean and variance vectors (variances are diagonal matrices),
andNK masses, for a total ofNK(2d + 1) elements. Each

2

(s)
jk

is also termed asmassof the k-th component of thej-th state

distribution for speakers



speaker transformation hasd(d+ 1) elements.

Both methods need to store the speaker transformations at the
end of the estimation (MLLR) stage, with a total cost ofSd(d+1)
elements. The savings from ITSAT come from the fact that it
needs to store only one set of model parameters (the accumulated
masses, means and variances), while the SYNC stage in the origi-
nal SAT method requires the intermediate storage of all individual
speaker model parameters. In ITSAT, the accumulated model has
NK(2d + 1) elements. In the original SAT method, the total re-
quired space for the model parameters isSNK(2d+1). Thus, the
savings in disk space and I/O operations from the ITSAT method
are proportional to the number of speakers in the training set. As
an example, consider training on 2000 speakers using the original
SAT method. In our typical State Clustered Tied Mixtures (SCTM)
system,N = 3000, K = 64, andd = 45. If each vector element
is represented with 4 bytes, then the original SAT method would
require a total of 73 GBytes of disk space. On the other hand, the
ITSAT method would require only 53 MBytes.

It is important to note that the savings in disk space and I/O
from the ITSAT method come with no significant loss in recogni-
tion performance. Table 1 shows the word error rates of two SAT
models. The models were trained on approximately 11 hours of
male speech, collected from 300 speakers from the Hub-4 1996
Broadcast News (BN) corpus, and adapted to the Hub-4 1996 UE
development test speakers using unsupervised MLLR adaptation
with two regression classes defined per speaker. The two mod-
els were based on our Phonetically Tied Mixture (PTM) HMM,
which is a triphone-based continuous density HMM system where
all allophone models of each of the 46 phonemes of the system are
modeled by a mixture density of 256 Gaussian components.

Acoustic training paradigm WER
Original SAT 34.24
ITSAT few full matrices + identity smoothing 34.31

Table 1: Word Error Rate (%) comparison between original SAT
and ITSAT (optimized PTM nonxword results)

In the following section we show that the performance of IT-
SAT can be improved by making the inversion of the transform
more robust.

5. ROBUST ESTIMATION BASED ON DIAGONAL
COMPUTATION

Since the amount of speech from an individual speaker is usu-
ally small, the key issue here in ITSAT is to make robust esti-
mates of the inverted transformation matrices for each speaker
especially when there is not much speech available. Even with
enough speech, the estimated transformation could still be ill con-
ditioned due to the presence of background noise, music or long
period of silence.

In our first implementation of ITSAT the interpolation param-
eter was a linear function of the conditioning of the transformation
matrix. This was enough to make the inversion reasonable [6], but

we find that we can get a better result by using a sigmoid-like func-
tion for the interpolation parameter. The result improves further if
we use a diagonal transformation matrix for the interpolation in-
stead of an identity matrix:

~W (s) = �D
(s) + (1� �)W (s) (7)

HereD(s) is separately estimated with the assumption that the
transformation only includes scaling and translation [5]. As we
constrain the transformation matrix to be diagonal, the number
of parameters is reduced to 90, but it allows considerably more
power than just a vector shift. Diagonal matrices have been com-
pared with full matrices by several researchers [7], and the result
has generally been that the full matrices are more powerful, even
when the number of diagonal matrices is allowed to be large. This
is probably because each full matrix specifies a smooth contin-
uous transformation, while the transformation is not continuous
between the diagonal transformations. In the ideal case, the full
matrix W (s) should work better than the diagonal-onlyD(s) in
ITSAT. But given that we can’t estimate most full transformation
matrices accurately, we could prefer usingD(s) for its simplicity
and robustness. This is especially the case for ITSAT where a large
number of individual transformation matrices need to be inverted.
The diagonal transformation matrices can be estimated more ro-
bustly and are trivial to invert, so no smoothing is necessary. The
computational overhead is also comparable to using only a few full
transformation matrices, since a diagonal matrix can be estimated
in a small fraction of the time required to estimate a full one. In
addition, it is very easy to specify reasonable constraints for the
values of a diagonal transformation. Specifically, the linear term
should always be positive and not too far from 1, while the trans-
lation should be in the neighborhood of 0.

By restricting to diagonal-only transformations, we are able to
adapt at a much finer grain resolution by estimating a large number
of robust diagonal transformation matrices. We achieved an addi-
tional 1.7% relative gain by using 256 diagonal transformations
instead of a few full matrices. In summary, ITSAT based on di-
agonal transformation provides more WER reduction and requires
far less computation and storage.

6. EXPERIMENTAL RESULTS

Table 2 shows the word error rate (WER) of SI and ITSAT adapted
decoding on the male speakers of the 1996 Hub-4 development test
set. The training and decoding data sets are the same as those in
the experiment mentioned in table 1. For each condition other than
the unadapted SI condition, the trained model is adapted to each
test speaker using MLLR with a few full matrix transformations.

Training paradigm and Transformation type WER
SI unadapted 35.56
ITSAT few full matrices + identity smoothing 32.36
ITSAT few full matrices + diagonal smoothing 31.70
ITSAT 256 diagonal matrices only 31.24

Table 2: Comparison of ITSAT using different transformation
models (optimized SCTM nonxword results).



As the table shows, ITSAT with a lot of diagonal-only trans-
formation matrices can give more WER reduction than the alter-
natives of a few interpolated full matrices.

We tried using diagonal transformations both for ITSAT and
for the adaptation itself. We find that the adaptation using diag-
onal transformations alone is not as good as that using a full ma-
trix, even though the ITSAT had been performed using diagonal
transformations. We believe the inversion of the transformation
matrices in ITSAT, which is very sensitive to the variability of es-
timation, benefits most from the diagonal transformation.

7. MULTI-STAGE TRANSFORMATIONS

In transcription, the adaptation is performed by recognizing a long
passage, then adapting the parameters based on the recognized an-
swer, and then recognizing again. There is a tension between using
a detailed transformation and the uncertainty about the transcrip-
tion. The problem is that if we base the transformation on the
first pass recognition, then the transformed model will likely re-
peat the same recognition errors. One way to avoid this is to es-
timate a small number of transformations that are each shared by
a large number of model parameters. In this way a few incorrect
estimates (due to recognition errors) will be outweighed by the co-
herent correct estimates. But a small number of transformations
is not sufficiently detailed to make a large improvement in recog-
nition accuracy. Another way to reduce the effect of recognition
errors is to estimate the probability that each word or phoneme
is correct, and to weight the estimation of the transformations ac-
cording to this probability.

In this paper, we propose a new way to deal with the problem.
In the first stage of adaptation, we use a small number of trans-
formations, in order that the effect of recognition error is small.
The assumption is that this will generally move the model in the
right direction on a global level. Next, we apply a more detailed
transformation, by allowing more independent parameters in the
transformations, but we must apply some other constraint in or-
der to avoid learning the recognition errors. At the end, we would
like to apply constraint based adaptation technology derived from
Maximum A Posteriori (MAP) estimation [3] to adapt at a finer
resolution. Preliminary results are in the following table.

Multi-stage transformations WER
SI 35.56
First stage with 8 transformations 31.24
Second stage with 32 transformations30.83

Table 3: Effect of multi-stage transformations on WER reduction
(optimized SCTM nonxword results).

8. CONCLUSION

We have described the Inverse Transform Speaker Adapted Train-
ing (ITSAT) method. The method is simpler, more intuitive, re-
quires far less computation and storage than the original method
of SAT, and results in higher accuracy. It also lends itself to multi-
ple stages of adaptation during both training and recognition.
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