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ABSTRACT

This paper presents a perceptual-based image coder, which dis-
criminates between image components based on their perceptual
relevance for achieving increased performance in terms of qual-
ity and bit-rate. The new coder uses a locally-adaptive perceptual
quantization scheme based on a tractable perceptual distortion met-
ric. Our strategy is to exploit human visual masking properties by
deriving visual masking thresholds in a locally-adaptive fashion.
The derived masking thresholds are used in controlling the quan-
tization stage by adapting the quantizer reconstruction levels in
order to meet a desired target perceptual distortion. The proposed
coding scheme is flexible in that it works with any subband-based
decomposition and with block-based transform methods. Com-
pared to the existing perceptual transform-based and block-based
methods, the proposed perceptual coding method exhibits superior
performance in terms of bit rate and distortion control. Coding
results are presented to illustrate the performance of the presented
coding scheme.

1. INTRODUCTION

Driven by a growing demand for transmission and storage of visual
data over media with limited capacity, increasing efforts have been
made to improve compression techniques for visual information.
One promising path is to integrate models of the human visual

system (HVS) into the design of coding algorithms. This has been
motivated by the fact that, given the diversity of image types and
sources, reliable engineering models for image sources currently
do not exist. With the absence of reliable image source models,
image coding algorithms must rely upon generalized receiver mod-
els to optimize their efficiency and performance. For an image the
ultimate receiver is the human visual system, and image perception
is affected by its sensitivity and masking properties.

Perceptual-based algorithms attempt to discriminate between
signal components which are and are not detected by the human
receiver. They exploit the visual masking properties of the human
visual system and establish thresholds of just-noticeable distor-

tion (JND) and minimally-noticeable distortion (MND) based
on psychophysical masking phenomena. Since images are usually
stored and transmitted in a compressed form due to their large in-
formation content, the interest has been especially in developing
reliable and efficient image coding algorithms. The central ideas in
perceptual coding are: 1) to “hide” coding distortion beneath spa-
tial and temporal JND thresholds, and 2) to augment the classical
coding paradigm of redundancy removal with elimination of irrel-
evant signal information, i.e., discarding those signal components

which are imperceptible to the human receiver.
This paper presents a locally-adaptive perceptual-based image

coder with the objective to minimize the bit rate for a desired per-
ceptual target distortion. The proposed coder is flexible in that
it works with any subband-based decomposition as well as with
block-based transform methods. Our strategy is to exploit human
visual masking properties which we derive in a locally-adaptive
fashion for the desired subband decomposition or block-based
transform. The specified subband decomposition or frequency
transform decomposes the visual scene into elemental components
(channels) with varying frequency and and orientations. We then
adaptively compute local distortion sensitivity profiles in the form
of detection thresholds that adapt to the varying local frequency,
orientation, and spatial characteristics of the considered image data.
The derived thresholds are used to adaptively control the quanti-
zation and dequantization stages of the coding system in order to
meet a target perceptual distortion.

The paper is organized as follows. Section 2 discusses previous
related work. Section 3 describes the proposed coding algorithm.
Coding results and comparison with existing perceptual-based cod-
ing schemes are presented in Section 4.

2. EXISTING PERCEPTUAL CODING
SCHEMES

True perceptual quantization requires computing and making use of
image-dependent, locally-varying, masking thresholds. However,
the main problem in using a locally-adaptive perceptual quantiza-
tion strategy is that these locally-varying masking thresholds are
needed both for encoding and decoding. This, in turn, would re-
quire sending or storing a large amount of side information and
would result in a significant increase in bit rate.

The existing and recently developed “perceptual-based” com-
pression methods attempt to avoid this problem by giving up or
significantly restricting the local adaptation. One method called
DCTune [1] fits within the framework of JPEG. Based on a model
of human perception that considers frequency sensitivity and con-
trast masking, it designs a �xed DCT quantization matrix (3 quan-
tization matrices in the case of color images) for each image. The
fixed quantization matrix is selected to minimize the overall per-
ceptual distortion. The Perceptual Image Coder (PIC) proposed
by Safranek and Johnston [2] works in a subband decomposition
setting. Each subband is quantized using a uniform quantizer with
a �xed step size. The step size is determined by the JND threshold
for uniform noise at the most sensitive coefficient in the subband. A
scalar multiplier in the range of 2 to 2.5 is then applied to uniformly
scale all step sizes in order to compensate for the conservative step
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Figure 1. Block diagram of the proposed coding
scheme

size selection and to achieve good compression ratio. In block-
based methods [3], a scalar value can be used for each block or
macro block to uniformly scale a �xed quantization matrix in order
to account for the variation in available masking (and as a means to
control the bit rate). The quantization matrix and the scalar value
for each block need to be transmitted, resulting in additional side
information.

All of these methods choose a fixed quantization matrix for the
whole image, select one fixed step size for a whole subband, or scale
all values in a fixed quantization matrix uniformly. They do not take
into account the locally-varying masking thresholds which differ
based on the local image content. Because of this limitation, they
fail to exploit the large dynamic range of the available masking and
tend to allocate too much bits to less sensitive coefficients, resulting
in over-coding of some image components or in unnecessary visible
artifacts. Furthermore, it would be desirable to have control over
the resulting perceptual distortion.

3. PROPOSED PERCEPTUAL-BASED
CODING SCHEME

The main blocks of the proposed coding scheme are shown in
Fig. 1. The goal is to adapt the quantizer parameters to achieve
reduction in bit-rate for a given target perceptual distortion.

3.1. Multi-channel Decomposition

The decomposition stage decomposes the input image into com-
ponents with varying frequency and orientation (channels). These
channels differ in terms of their sensitivity and masking properties.
Each channel b consists of a matrix of coefficients i(b; r; c), where
r and c represent the row and column numbers, respectively, indi-
cating the location of the coefficient within the considered channel.
The local amount of masking differ for each coefficient in function
of its channel location (frequency and orientation), local luminance
(given by lowest frequency channel coefficients), local contrast in
each channel (channel contrast masking). For subband-based de-
compositions, the channels correspond to the resulting subband
images. For block-based decompositions, the bth channel would
consist of the collection of all bth transform coefficients taken one
at a time from subsequent blocks.

3.2. Perceptual Model

A tractable perceptual distortion metric is needed in order to adapt
the quantizer parameters to the local masking characteristics of the
visual data and meet the desired level of perceptual quality.

Our perceptual distortion metric is based on the “probability
summation” model presented in [4]. Our detection model can be
described as consisting of a set of detectors, one at each location
(b; r; c); P(b;r;c) is then the probability that detector (b; r; c) will

signal the occurrence of a distortion or, equivalently, it is the prob-
ability that the perceptual error introduced at (b; r; c) is visible
(above threshold).

We define the probability of detection over R, PR, to be the
probability that a distortion will be detected over the region R.
Then, based on the above, PR will be

PR = 1�
Y

(b;r;c)2R

(1� P(b;r;c)): (1)

Since human observers can mainly scrutinize the image region
that falls on the fovea (two degrees of visual angle), we propose
pooling the error over subband image regions, which we will denote
by foveal regions R = F(b;r;c). F(b;r;c) is the region centered at
location (r; c) in visual channel b and whose size is computed to
cover two degrees of visual angle. In (1), P(b;r;c) is the probability
of detecting a distortion at coefficient i(b; r; c). It is determined by
the psychometric function which can be modeled as an exponential
of the form

P(b;r;c) = 1 � exp
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where e(b; r; c) is the quantization error, t(b; r; c) denotes the de-
tection (masking) threshold at location (b; r; c), and �b is a param-
eter whose value is usually chosen to maximize the correspondence
of (2) with an experimentally computed psychometric function for
a given type of distortion. In psychophysical experiments that ex-
amine summation over space, a �b of about 4 has been observed [4].
Note that, in this case, the threshold is defined to be the error value
e(b; r; c) which results in a detection probability P(b;r;c) = 0:63.

Substituting (2) in (1), and setting R = F(b;r;c), results in

PF(b;r;c)
= 1 � exp

�
�(D(b;r;c))

�b
�

(3)

where

D(b;r;c) =

0
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(4)

which takes the form of a Minkowski metric with exponent �b.
Hence, minimizing the probability of detecting a difference in
the foveal region F(b;r;c) is equivalent to minimizing the metric
D(b;r;c). Note that the threshold probability PF(b;r;c)

= 0:63
occurs when D(b;r;c) = 1. So, lossless perceptual coding would
correspond to D(b;r;c) � 1.

Finally, our perceptual distortion measure D is based on the
maximum probability of detection for all foveal regions,

D = max
(b;r;c)

�
D(b;r;c)

	
(5)

The detection thresholds t(b; r; c) used for determining the per-
ceptual distortion are computed as

t(b; r; c) = tCS(b; r; c) � aCM (b; r; c) (6)

where tCS(b; r; c) is the contrast sensitivity (base detection) thresh-
old and aCM (b; r; c) is the contrast masking adjustment.
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Figure 2. Pseudo-code for distortion-constrained
locally-adaptive perceptual quantization

tCS(b; r; c) is a measure, for each channel b, of the smallest
contrast that yields a visible signal over a background of uni-
form intensity. With the background luminance set to 127 (neutral
gray), the detection threshold t127(b) is established for channel b
by psycho-visual detection tests for uniform noise injected in the
considered channel b. The test is repeated for all channels to ob-
tain the complete set of base sensitivity thresholds t127(b). The
base sensitivity thresholds are essentially a measure of the HVS
Contrast Sensitivity Function (CSF) for the specified decomposi-
tion and are a global characteristic independent of the input im-
age. The obtained base sensitivity thresholds t127(b) measure the
contrast sensitivity in function of frequency while fixing the back-
ground intensity level. In general, the detection threshold varies
also with the background intensity. This phenomenon is known
as luminance masking or light adaptation [1]. In order to account
for luminance masking, detection thresholds tm(b) are measured
with different uniform background intensities m resulting in a
"brightness correction" adjustment aD(m) = tm(b)=t127(b). In
our case, the uniform background corresponds to the local mean
m(r; c) = mean + i(0; r; c), where mean is the global mean
of the input image (which is removed before the decomposition
and coded separately) and i(0; r; c) is the transform coefficient
in subband 0 at the considered location (r; c). The "brightness
correction" adjustment aD (m(r; c)) accounts for the variations in
sensitivity depending on the local mean m(r; c). It follows that the
base detection threshold tD(b; r; c) is given by

tD(b; r; c) = t127(b) � aD(m(r; c)) : (7)

aCM (b; r; c) refers to the reduction in the visibility of one im-
age component (the target) by the presence of another one (the
masker). In our case, the target is the quantization noise and the
masker is given by the input image channel components. Our con-
trast masking model is derived from a non-linear transducer model
for masking of sinusoidal gratings [5]. The non-linear transducer
model was adapted for the considered band-limited channel com-
ponents. aCM (b; r; c) is thus given by:

aCM (b; r; c) =

8><
>:max

(
1;

���� m(b;r;c)

tCS(b; r; c)

����
0:6
)

b 6= 0

1 b = 0

(8)

In (8), m(b;r;c) is the weighted average magnitude over the foveal
region F(b;r;c).

3.3. Distortion-Constrained Perceptual Quantiza-
tion

The computed local masking thresholds are used to adaptively con-
trol the step-size s(b; r; c) of a uniform quantizer while meeting a
desired perceptual distortion DT . The proposed adaptive quanti-
zation scheme is shown in the form of pseudo-code in Fig. 2.
fqbg are channel weights that need to be determined such that

a target perceptual distortion D = DT is met. In order to stay
compliant with the bitstream syntax of the DCT-based standards,
when a DCT-based decomposition is used, qb is taken to be an
8-bit integer and can, thus, be transmitted as the entries of the
“quantization matrix” Q. However, in our case, the entries qb of
Q are not directly used as step sizes. Instead, they are interpreted
as weights for the local adaptive step-sizes s(b; r; c), which are
used to quantize the channel coefficients i(b; r; c). A factor � is
used to limit the step-size multiplier qb=� to a desired maximum
value. In our case, we use � = 32, which gives qb=� < 8. After
estimating the masking thresholds t(b; r; c), the goal is to optimize
the weights fqbg in such a way, that the quantization is as coarse
as possible while the target perceptual distortion D = DT is met.
qb can be optimized separately for each channel b since D = DT

is met if Db = max(r;c) fD(b; r; c)g � DT for all b.
As shown in Fig. 2, the masking thresholds t(b; r; c) are com-

puted and qb is initialized based on the computed t(b; r; c) and
the desired target distortion DT . Then, the optimal value of qb is
determined by means of an iterative process. In every iteration,
Db is computed. If Db � DT the value of qb is increased using a
bisection method, otherwise is is decreased using the same method.
The process is terminated when qb has not changed with respect
to the previous iteration. Since qb is an 8 bit integer, the bisection
process terminates after at most 9 iterations.

One main issue in developing the proposed perceptual-based
coding approach is that the image-dependent, locally-varying,
masking thresholds t(b; r; c) are needed both at the encoder and at
the decoder in order to be able to reconstruct the coded image. This,
in turn, would require sending a large amount of side information,
and the associated increase in bit-rate conflicts with the original ob-
jective making very low bit-rate coding virtually impossible. Our
proposed locally-adaptive coding scheme eliminates the need for
transmitting side information for each step-size by estimating the
available masking t̂(b; r; c) both at the encoder and decoder from
the already received data and a prediction of the transform coeffi-
cient to be quantized. In this way, the local masking characteristics
of the visual data can be exploited without having to transmit addi-
tional side information. The predictor used to estimate t(b; r; c) is
a linear, four point, first-order predictor. It uses the causal closest
four neighbors. A set of predictor coefficients is computed for each
channel based on the correlations of the transform coefficients in
this particular channel. t̂ and m̂ in Fig. 2 denote the estimated
values.

4. RESULTS

We illustrate the performance of the proposed coding scheme using
512�512 grayscale images and two different decompositions: 1) a
DCT-based decomposition, in which case we compare with Wat-
son’s DCTune method [1]; 2) a generalized quadrature mirror

�lter-bank (GQMF) decomposition, in which case we compare
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Figure 3. GQMF-based coding results with DT = 3:24

�rst-order entropy
image DCTune [1] Proposed Coder
baboon 1.639 1.364 (-17%)
indian 1.966 1.271 (-35%)
leena 0.956 0.757 (-21%)

lighthouse 1.248 0.825 (-34%)

Table 1. First-order entropies for DCTune [1] and
the proposed coding scheme with a DCT-based de-
composition

with the Safranek-Johnston PIC [2]. The perceptual thresholds
were optimized for a viewing distance of 6 times the image height.

Tables 1 and 2 compares the proposed coding scheme with
Watson’s DCTune (DCT-based) and the Safranek-Johnston PIC
(GQMF-based), respectively, in terms of first-order entropies. The
target distortion has been set to DT = 1:0 (perceptually-lossless)
for the DCT-based comparison. For the GQMF-based decomposi-
tion, the Safranek-Johnston PIC does not allow a target distortion
to be specified. So, in this case, the comparisons were achieved by
setting the PIC step-size scalar multiplier to 2.5 (which results in
almost transparent, high quality, images [2]) and explicitly comput-
ing the resulting coding distortion produced by the PIC algorithm
for each coded image using the metric (5). Then, in our coding
scheme, DT is set to be equal to the distortions produced by the
PIC. These distortions are listed in Table 2. Fig. 3 presents the ob-
tained coding result for the Indian image using the GQMF-based
coders and DT = 3:24 (corresponding to a step-size multiplier of
2.5 in the Safranek-Johnston PIC).
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