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ABSTRACT mation is achieved by a subset partitioning approach that is dupli-
cated at the decoder. The refinement is based on ordered bit plane

The Set Partitioning in Hierarchical Trees (SPIHT) approach fortra_msmission 01_‘ _the magnitudes of_the coefficients previously ascer-
still image compression proposed by Said and Pearlman [8], is onined as significant. Recently, Xiorg al [10] has developed a
of the most efficient embedded gray image compression schemesfifY €fficient space-frequency quantization scheme that uses a rate-
date. The algorithm relies on a very efficient scanning cum bit-allodistortion criterion to jointly optimize zerotree quantization and
cation scheme for quantizing the coefficients obtained by a wavel&¢alar frequency quantization.
decomposition of an image. In this paper, we adopt this scheme to
scan vectors of wavelet coefficients, and use successive refinem trk, we attempt coding several coefficients at once by vectoring

vQ technique_s_ with staggered bit-allocation to guantize SEVeTdhem. We adopt the efficient set-partitioning approach of Said and
WaVEISECoSMEIENtS at once THE NEVESCheme IS named Vspl'ﬂgarlman to partially order vectors of wavelet coefficients and

(Vector SPIHT). We present some coding results comparngytine them successively using multistage or tree-structured VQ [5].

VSPIHT to the sce_tlar counte_rpart in the mt_%an-squared-e_rror sens?ﬂﬁlthough use of a successive approximation lattice-based VQ has
The method readily generalizes to color images and video wher een proposed earlier on the EZW scheme by E. A. B. da Silva [4],

_the vector-based approach makes more sense. We present the Cefagr' approach of using trained VQ with vector set-partitioning is
ng _results on INTRA frames of QCIF sequences as compar ore efficient and clearly surpasses their results. In Section 2 we
against H.263. discuss the coding algorithm in detail. In Section 3, we present the
implementation details and coding results for gray scale images,
1. INTRODUCTION and compare them with the scalar SPIHT scheme and other algo-
. . .___rithms. Section 4 presents the implementation details and results for
Natural images can very well be characterized by a Ilnear TRA frames of QCIF video sequences, and compares them

combination of energy concentrated in pockets in both space and -inst DCT-based INTRA frame compression of H.263 [6]. Sec-
frequency. The wavelet transform is very well suited for transform[ion 5 concludes the paper

coding of such images because it decorrelates the image both In

space and frequency, thereby compacting energy into a few low fre-

quency and a few high frequency coefficients. Once a hierarchical 2. VECTOR-BASED SPIHT
wavelet representation of an image is obtained, the coding effort .

reduces to quantizing the coefficients as efficiently as possiblé-1 Coding Methodology

Recently there has been a plethora of research activity in wavelet . . L -
based image coding [1-7]. The efficiency of a wavelet-based com- The SPIHT algorithm [8], while very efficient in transmission

. ; - i of ordering information, essentially involves a scalar quantization
pression scheme relies on the efficiency of specifying to the

decoder which coefficients to quantize before which others, and ofoeratlon. As such, the dependencies that exist between the neigh-

the corresponding bit allocation. Shapiro [9] introduced the Embei)ormg coefficients are not exploited to the fullest extent. The arith-

ded Zerotree Wavelet (EZW) scheme where zbmtreeenables metic_coding enhancement of SPIHT indirectly .epr0|t.s this
. L S . . redundancy, to gain about 0.3-0.6 dB over the non-arithmetic coded
efficient prediction of significance information of the wavelet coef-

ficients. Following this work, Said and Pearlman [8] developed aﬁ/ersmn_. An a_lternanvc_a gpproach to COd.'ng images, is to code sev-
eral neighboring coefficients at once using VQ, rather than perform

aternate scheme, called set partitioning in hierarchical treeg scalar quantization of the individual coefficients. The efficient set-
(SPIHT), which, though based on the same basic concepts, was %r d '

L . o : - epartitioning methodology, adapted for vectors, can be used to pro-
more effective in transmission of significance information to th : . ; !
dyce an embedded bit stream. Arithmetic coding over vector-based

decoder. Both the schemes relied on partial magnitude ordering et partitioning can further improve the coding results. However, in

the wavelet coefficients, followed by progressive refinement, ananis aper we will concentrate onlv on the basic non-arithmetic
produced embedded bitstreams. The transmission of ordering infor- pap y

coded vector set partitioning.

In order to code images and video at very low bitrates, in this

In the vector-based approach, we group wavelet transform
*  This work was supported by ONR grant NO0014-95-1-1214. coefficients in eacd x V. window in each band as a single vector




of dimensionHV . The parent child relationship between the vecing. A drawback however, is that for images in which the correla-
tors in different bands is defined as in [8]. We then use the set-partion between the components of a vector is low, there is less to be
tioning methodology to achieve a partial ordering of vectors bygained by VQ when compared with scalar quantization. In fact,
vector-magnitude. Each new pass yields a new set of vectors whigtith VQ, too many bits may be unnecessarily spent in quantizing
have magnitudes higher than a threshold associated with the passctors which have only one or two significant coefficients. For
The threshold progressively decreases from one pass to the next.sinch images, the vector-based approach cannot be expected to be
other words, each pass ascertains as significant the set of vectuesy effective.

that lie within aHV -dimensional thick shell, bounded on the inside . ) ]

by a hypersphere of radius equal to the current threshold, and on tRe2 Classified Successive Refinement VQ

outside by a hypersphere of radius equal to the previous threshold. The vectors decided as significant in a pass, are roughly quan-
The only exception_is the first pass, which cc_)nsi(_jers as Signific:"’"ﬁtzed in the same pass, and are successively refined in the subse-
all vectors of magnltu_de Iarger_thR@. TheR’s in Figure 1 corre- _guent passes. The pass in which a vector becomes significant also
spond to the decreasing magnitude thresholds for determining sig,qgifies the vector, and determines the particular successive
nificance of vectors. The progressive refinement of vectors alrea(%finement VQ to use to quantize it. Therefordy ffasses are used
decided as significant in previous passes is achieved by classifiﬁga”, N successive refinement VQs need to be designed, one for
successive refinement VQ schemes such as multistage or tree-strdgep ¢jass and its associated magnitude threshold. Note that for
tured VOQ, Whe_re t_he class is dt_atermlned by the pass in which a vegs ., class, the codevectors of the corresponding VQ span the shell
tor becomes significant (see Figure 1). between two hyperspheres, except for the first class whose code-

vectors span the outside of a hypersphere. In Figutéass refers

to the class associated with the pass in which the magnitude thresh-

Class, old for significance &,

We investigated two standard trained successive refinement

schemes - Tree-Structured VQ (TSVQ) and Multistage VQ

. (MSVQ)[5]. While the most efficient scheme for successive refine-
"‘ ment of vectors is Tree-Structured VQ, the storage requirements are

‘ usually very large. Multistage VQ strikes a good compromise
between storage complexity and efficiency. In the next two Sections

we present the implementation details, and the coding results of our
algorithm.

3. GRAY IMAGES

Figure 1. Decreasing Magnitude Thresholds to determing.l Implementation Details

significance of vectors, and the corresponding classes. . . .
In our implementation for gray-scale images, we used a 5-

Note that the use of the, -norm (magnitude) in determiningstage wavelet decomposition®t2x 512 images using the 9/7 bi-
significance of a vector in a pass is justified for orthogonal waveorthogonal wavelets in [2]. Coefficients in ea2hk 2 window are
lets, because it follows from Parseval’s relationship that the squarstgctored to obtain vectors of dimension 4, which is just the right
magnitude error in quantization of the vectors contribute additivel\size to use before the VQ complexity becomes prohibitive. We
to the reconstruction mean-squared-error. That is, a higher magriesigned 10 VQs for a maximum of 10 corresponding passes with
tude vector when transmitted losslessly, will reduce the reconstrughe following thresholds: 3000, 1500, 700, 350, 225, 250, 150, 100,
tion mean-squared error more than a lower magnitude coefficier®4, 36, 18. A set of 30 images of siz&é2x 512  are used as the
and therefore should be quantized before the other. For bi-orthogtraining set to design the VQs. Each original sample vector is used
nal wavelets, this is not strictly true. However, assuming that bito generate 2 training samples by taking its negative as well. For
orthogonal wavelets are approximately orthogonal, lthe  -nornsparse high threshold classes, the components of a vector and its
will still be the best criterion to use to determine the significance onegative are further permuted to produce 24 sample vectors each.
a vector. Such a permutation is justified by the isomorphisr2 &f2 blocks.

For the low-low band, the mean of the wavelet coefficients is finely

Such a vector-based approach has several advantages. Firsgifintized and transmitted to the decoder before set-partitioning
allows better exploitation of the spatial redundancies in the wavelejcans commence.
coefficients in the same subband. For example, vectors in the lower
bands (high coefficients) usually show a strong correlation and a  For the MSVQ implementation, the bit allocation chosen is as
larger spread along tHel, 1, ...}  axis, producing a roughly ellipti-shown in Table 1. It is evident from the bit allocation that we do not
cal distribution with major axis along the same direction. Vectoralways refine all the significant vectors in all the refinement passes.
Quantization is better suited to exploit this correlation than scalafhe reason for choosing such a staggered bit allocation is that a sin-
schemes. Second, since the number of elements to code are redugkedstage VQ is more efficient than a two stage VQ using the same
by a factor equal to the dimensionality of a vector, less bits argumber of bits. Table 1 also shows the bit allocation for the TSVQ
expended in transmitting the ordering information by set-partitionimplementation. Note however, that this TSVQ has not yet been



designed very rigorously. A training set of 30 images is clearlyin the horizontal as well as the vertical direction. Although the color
insufficient for a tree-structured VQ design, where the total numbertomponents are supposed to be considerably decorrelated in this
of codevectors required are enormous. representation there exist a significant amount of correlation
between the luminance and the chrominance components. A con-
ventional approach would apply the gray-scale algorithm to the
three color components separately, and therefore waste bits in rep-
resentation of the significance information. Moreover, bit-alloca-

Table 1. Classes, thresholds and Bit Allocation for MSVQ and
TSVQ Implementations for gray scale images.

MSVQ Bit TSVQ Bit tion among the luminance and the color components have to be
Class | Threshold Allocation Allocation treated separately, which poses difficulties in embedded coding of
0 3000 9,0,6,0,6,06,06,0 5,3,3,3,3,3,3,3,3,3 the colorimage as a whole. We attempt coding the color image as a
1 1500 9.06,06,0606 533333338 whole by adopting the following approach. An equal number of
stages of wavelet decomposition are applied to the luminance and
2 /00 9.06,06,0,6,0 53333333 the two chrominance components separately. For 2ach win-
3 350 8,0,6,0,6,0,6, 6.3,3,3,33.3 dow in the luminance wavelet transform domain, the 4 luminance
4 225 8,0,6,0,6,0 6,3,3,3,3,3 coefficients and the 2 chrominance coefficients (1 for each chromi-
5 150 8,0,6,0,6 6,4,3,3,3 nance component) are grouped to obtain vectors of dimension 6.
6 100 8.0.6,0 6,443 This 6-dimensional vector, as a single unit, now contains both the
7 64 854 644 luminance as well as the color information at the corresponding
- o space-frequency location in the image. Vector SPIHT now operates
8 36 7.2 6.4 as in the gray image case, but with vectors of dimension 6 instead
9 18 6 5 of 4.
3.2 Coding Results In order to reduce the incidence of false colors, we use a

) o weighted VQ, where the two chrominance coefficients in a vector
We present the coding results upto 0.5 bits/pixel for two.

. s ) . r are weighted 1.2 times as compared to the luminance coefficients.
images with varying levels of coding difficulty. They are the Bar-

bara image (see Figure 2), and the Goldhill image (see Figure 3). We applied our VSPIHT scheme to code INTRA frames of
PSNR comparisons are made with [8] and [9] to show the effective176x 144 QCIF sequences. Three stages of decomposition are
ness of the VSPIHT algorithm. Our MSVQ-based VSPIHT algo-applied to the Y, Cb and Cr components, with the 9/7 bi-orthogonall
rithm easily surpasses the binary uncoded version of SPIHT faravelets in [2]. Eight classes of multistage codebooks are designed
both images, and the arithmetic coded SPIHT, for the Barbarfor the following thresholds: 1024, 512, 256, 128, 64, 32, 16, 5. The
image. The TSVQ-based algorithm surpasses both. bit allocation chosen is shown in Table 1. Once again, a staggered

bit-allocation is used to improve the efficiency of multistage VQ.
4. COLOR IMAGES

4.1 Implementation Details 4.2 Coding Results

The VSPIHT method can be readily generalized to color W€ compared the performance of VSPIHT for INTRA frame
images, where the vector based approach naturally makes mdf@ding of standard QCIF sequences, with that obtained by DCT-
sense than in gray images. For the ensuing discussion we restR@sed compression in the H.263 video coding standard. Figure 4
our attention to color images in the standard 4:2:0 format, where ﬂ.%mws the luminance SNR vs. bitrate for a representative frame 100
chrominance components (Cb, Cr) are subsampled by a factor ofoﬁ the Mother-Daughter QCIF sequence when compared against the
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Figure 2. Coding results for the Barbara image. Figure 3. Coding results for the Goldhill image.



TMN5-2.0 implementation of H.263. Figure 5 shows the corre-
sponding results for Frame 100 of the Hall_Monitor QCIF
sequence. The gains are as much as 2dB. The chrominance results
are similar. Besides obtaining a significantly higher SNR, VSPIHT P
can accurately control the number of bits spent in coding, unlike the -

DCT-based scheme.

Table 2. Classes, thresholds and Bit Allocation for MSVQ

Implementation for color images.

MSVQ Bit

Class | Threshold Allocation

0 1024 10,0,7,0,7,0,7,0

1 512 11,0,8,0,7,0,7

2 256 11,0,8,0,7,0

3 128 11,0,8,0,7

4 64 11,0,8,0

5 32 11,0,7

6 16 11,0

7 5 10

5. CONCLUSION
We have introduced the VSPIHT for embedded image codingnd Image Processing, ICambridge, MA, Vol. 845, pp. 50-58, Oct 1987.

and have demonstrated the effectiveness of classified vector qual E’I M. Antonini. M. Barlaud. P. Mathieu. and I. Daubechies

Hall_Monitor Frame 100 Results
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Figure 5. Coding results for Frame 100 of the Hall_Monitor
QCIF sequence.
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