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THE IONOSPHERE.
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ABSTRACT
We apply a natural pixel (NP) decomposition to the

problem of computerized ionospheric tomography (CIT).

For tomography from very few angles, the NP approach
provides some distinct advantages over standard basis
expansions. The NP solution requires no prior assump-
tion and as such embeds into the solution the natu-
ral spatial resolution supported by the data. For the
uniquely constrained CIT geometry, however, NP es-
timated fields will contain significant negative values.
We propose a method of improving the NP estimates
by enforcing positivity through an entropy regulariza-
tion algorithm. These techniques are demonstrated in
an example.

1. INTRODUCTION

Space physics research relies heavily on ground-based
measurements of the near-Earth plasma environment.
Many of the direct parameters measured are of a line-
of-site integrated nature. For example, radio techniques
are routinely used to determine the total electron con-
tent (TEC) between a ground receiver and a radio bea-
con on a transitting satellite. Similarly, photometric
brightness measurements of ionospheric optical emis-
sion (such as those occuring in the aurora-borealis)
represent an integration of the total photon emission
rate within a detector’s field of view. Much atten-
tion has been focussed in recent years on the applica-
tion of tomographic techniques to both radio [1][2] and
optical [3][4] measurements. We refer to these prob-
lems collectively as computerized tonospheric tomogra-
phy (CIT). Both give rise to a tomographic geometry
shown schematically in Figure 1. For clarity, we have
shown only a few lines-of-site through the region of in-
terest 2. In radio tomography, these lines connect to a
transitting satellite above €2, as indicated by the dashed

Farzad Kamalabadi

Department of Electrical
and Computer Engineering
Boston University
725 Commonwealth Avenue

Boston, MA 02215

8
S

ALTITUDE (KM)

=
o

0

0 100 200
GROUND DISTANCE (KM)

Figure 1: Schematic illustration of CIT geometry.

lines. In optical tomography, the detector elements de-
fine fan beams through €.

Due to the limited angle nature of the data acqui-
sition geometry, standard transform-based reconstruc-
tion algorithms such as filtered-back-projection (FBP)
are not suitable for ionospheric tomography. Conse-
quently, CIT relies on an algebraic formulation that
generally involves a rectangular pixelization of . The
extreme ill-conditioning imposed by the vewing geom-
etry is often handled in a heuristic fashion, either with
some assumption on the vertical shape [4] or by de-
composing the solution onto a set of orthogonal basis
functions that is assumed to span the space of feasible
structures [1].

This paper instead casts ionospheric tomography
in the framework of a “natural pixel” (NP) basis. The
NP reconstruction makes no prior assumption on the
solution, and so embeds in the solution the natural res-
olution supported by the data. This concept has been
formalized in development of multiscale basis expan-
sions for tomography, which develop natural from the
NP approach [5]. The NP solution also operates on



a much smaller inverse problem, and is therefore use-
ful to consider first when evaluating any limited angle
tomography problem.

2. PRELIMINARIES

In principle, one can formulate a tomographic inversion
problem whenever an unknown field can be related to
a set of integrals of some property of the field. As such
tomography is concerned with solutions to the Fred-
holm integral equation of the first kind with a square
integrable kernel

y(p) = / K(p,7)f(v)dvy (1)

where f is the unknown function, y is the measurement
and the kernel K is chosen with regard to the desired
solution and the nature of the measurements. While
the discretization of y is generally specified by the mea-
surement process, we are free to choose K. To our
knowledge, all approaches to solving the ionospheric
tomographic problem have incorporated some a priori
basis expansion of the object field. Appropriate lexico-
graphic ordering leads to a sparse matrix equation of
the form

y=Tf (2)

where y is the vector of measurements, f is the vector of
coefficients, and T is a matrix whose elements relate the
measurements y to the unknown parameterized field f.

There are several unavoidable problems with this
formulation. The first is that for any nontrivial dis-
cretization, T is generally ill-conditioned regardless of
the number or spacing of ground stations. Among other
problems, this means that the solution will generally
depend on the initial guess. A second problem is that
for such limited data, it is not clear what basis ex-
pansion should be chosen. One must generally rely on
intuition or some physical model in paramaterizing the
field. A third problem is that for many bases, T is very
large and sparse, leading to storage problems and great
computational overhead. Moreover, the sparseness has
no particularly useful structure that may be exploited.
And lastly, this formulation hinders accurate represen-
tation of the physical generation of the measurements.

3. THE NATURAL PIXEL
DECOMPOSITION

We now present an alternative basis that is closely con-
nected with the measurement geometry. Suppose we
have a total of N; measurements from N, observation
sites. Let r represent the position vector in Q. For

each of the N; measurements we define a characteristic
function

1  if r lies in the field of view of pixel ¢
$i(r) = { 0 otherwise

3)
The functions ¢;(r) are called “the natural pixels”, and
are uniquely defined for a given detector geometry and
region of interest. The lightly shaded regions of Fig-
ure 1 show two natural pixels. Note that unlike the
Galerkin basis, the NP basis functions are only orthog-
onal at a single observing location, otherwise they over-
lap (as indicated by the darker shaded region).

The measurements y; can be written

Y = /Qf(r)qsi(r)dr 1=1,..,N; (4)

We now construct an estimate of the field pr as a
linear combination in this basis

Ny

fup(x) =) ;- ¢4(x) ()

j=1

where the z; are the coeflicients of the NP basis expan-
sion. Substituting this estimate into (4) we have

w=Y 2 [ 4,@0u(e)ar (6)

The term over the brace, C;;, represents the areas of
overlap of natural pixel ¢ with natural pixel j (e.g.,
the darker shaded regions of Figure 1 is an off-diagonal
element of C). If we consider the entire vector of obser-
vations, we may write an equivalent matrix equation

y=Cz (7)

The NP projection matrix C has dimensions (N; x Ny).
For example, if we have 3 observing stations with 100
measurements each, C has dimensions (300 x 300). For
comparison, consider a modest discretization of {2 into
a (50 x 50) rectangular pixel grid. The projection ma-
trix 7' then has dimensions (2500 x 300), more than 8
times the size of C.

An efficient algorithm for the solution of (7) was
proposed by Buoconore et al. in [6], based on an iter-
ative minimum variance estimate. This algorithm pro-
ceeds from an initial guess of 2° = [0...0] and uses the
following successive state approximation to reach the
optimal object estimate Z.

1 1

~k+1 -1 ~k -1

2l = (I- —D7'C)2" + —D 1y (8)
r r
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Figure 2: A plot of the data created from the phantom
shown in Figure 3a (top panel) along with the corre-
sponding NP coefficients (lower panel). The black bars
indicate regions in the data where the NP coeflicients
are positive. Note that positive coefficients correspond
to data maxima.

where

D = ding[Ci] (9)

The suboptimal estimates are represented by the state
variables associated with the natural pixels instead of
those associated with the rectangular pixels, as tradi-
tionally used. The algorithm is convergent in the least
squares sense

With this solution, we may calculate pr as fol-
lows. Note that the elements of C are the areas of
overlap of the various fan beams, i.e., the inner prod-
ucts of the rows of the rectangular pixel basis 7. With
a sufficiently fine rectangular pixelization, C may be es-
timated as C ~ TTT. Combining this with (7) and (2)
results in the relationship between the NP coefficients
and the estimated field.

fvp =172 (10)

Note that this is identically the standard backprojec-
tion operation.

As an example, consider the auroral phantom shown
in Figure 3a, with a normalized peak density (or photon
volume emission) of 1. This structure is observed from
3 stations in the configuration of Figure 1, resulting in
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Figure 3: Example NP reconstruction for ionospheric
tomography. From left to right, top to bottom: (a)
Phantom ionospheric structure (fmax = 1.); (b) The
NP solution pr; (c) pru(pr — .4); (d) The back-
projection solution TTy; (e) The result of refining
pr with entropy regularization; (f) Comparison with
MART solution after the same number of iterations.

the projection data shown in the top panel of Figure 2.
The cameras have fields of view of 60°,90°, and 60°
respectively and data are recorded at 1° resolution.

Figure 3b shows fnp after only 5 iterations of (8)-
The visually displeasing background is due to negative
elements in the estimated field. However one can see
that the basic morphology of the 3 structures is esti-
mated reasonably well in the NP basis. In fact if we
can apply some known limits of occurence to the recon-
structed field, we can isolate the position of the peaks
of the phantom structures. As an example, Figure 3c
shows the field pru(pr —.4) where v is the unit step
function.

For comparison, we show in Figure 3d the backpro-
jection solution fBP = TTy. Simple backprojection
fails to locate accurately the 3 maxima as well as in-
troducing a variety of significant artifacts.

4. IMPROVED SOLUTION USING
ENTROPY REGULARIZATION

Due to the very limited number of observations, there
may be significant negative values in pr. Previous
works on NP tomography have not addressed this is-
sue, either because the angular coverage used did not



result in any significant negative field estimates or be-
cause they were concerned mostly with morphological
features of the reconstruction. However, solution posi-
tivity constititutes valuable prior information. Indeed,
in CIT we are often interested in the absolute magni-
tudes of the field paramaters.

We now use an entropy regularization algorithm to
redistribute the energy associated with the negative
pixels. Maximum entropy algorithms can be treated
in the context of Tikhonov regularization. The object
that is optimized can be written as

f=argming {[ly — Tf[ls — A[|Lf]lz}  (11)
where the operator L measures the entropy of f. Set-
ting A > 0 means we are prepared to trade off the
minimum residual norm solution for one which is pos-
itive. There are a variety of multiplicative algorithms
developed based on (11). We will here use the parrallel
log-entropy MART (PLogMART) algorithm proposed
by Depierro [7]. PLogMART maximizes the Berg en-
tropy, —In f, subject to y = T'f.

We must first construct an optimal positive version
of pr to use as the initial guess to PLogMART. How-
ever we wish to do this in a way that retains altitude
information recovered by the NP estimate. The lower
panel of Figure 2 plots the NP coeflicient vector z. The
dark bars in the top panel indicate regions of that data
where the corresponding NP coefficients are positive.
One can see that positive NP coeflicients correspond to
data maxima. Therefore, removing the negative values
in pr will have the largest effect on the smaller data
numbers. As a first guess to our entropy regularization
algorithm we may use

f° = fupu(fnr) (12)

This estimate retains the kernel features in pr. The
final estimate fis shown in Figure 3e. The solution
is improved over the NP solution. For comparison, we
show in Figure 3e the solution obtained from PLog-
MART with a constant initial guess after the same
number of steps. We note that this solution will eventu-
ally converge to the solution in Figure 3d but at greater
computational cost.

The steps used to create the above example may be
summarized in the following NP algorithm for CIT:

1. For a given detector configuration and region of
interest, calculate the natural pizel projection ma-
trir C = TTT.

2. Solve y = Cz for the NP coefficient vector Z.
3. Backproject & to obtain pr =T7T%.

4. create fO = pru(pr), and use as initial guess
to PLogMART to solve y =Tf.

5. SUMMARY

We have developed a framework for using a natural
pixel (NP) decomposition in computerized ionospheric
tomography. The NP basis is closely connected to the
measurement geometry, and as such provides a mea-
sure of the optimal tomographic resolution supported
by the data. We have shown by example some advan-
tages that the NP approach offers over standard itera-
tive techniques applied to CIT. The essential features
of an ionospheric phantom were recovered at consider-
ably less computation time. We have also addressed
the problem of negative elements appearing in fields
estimated from an NP basis with very few projections.
We have proposed a technique for redistributing this
negative energy using an entropy regularization algo-
rithm. We have summarized these technique in a gen-
eral algorithm that may be applied to any limited angle
tomography problem.
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