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ABSTRACT

For connected digit recognition the relative frequency
of occurrence for context-dependent phonetic units at
inter-word boundaries depends on the ordering of the
spoken digits and may or may not include silence or
pause. If these units represent classes in a model this
means that the distribution of samples between classes
(the class prior) may be extremely nonuniform and that
the distribution over many utterances in a training set
may be very di�erent from the rather 
at distribution
over any single test utterance. Using a neural network
to model context-dependent phonetic units we show
how to compensate for this problem. We do this by
roughly 
attening the class prior for infrequently occur-
ring context units by a suitable weighting of the neural
network cost function. This is based entirely on train-
ing set statistics. We show that this leads to improved
classi�cation of infrequent classes and translates into
improved overall recognition performance. We give re-
sults for telephone speech on the OGI Numbers Corpus.
Flattening the prior for infrequently occurring context
units resulted in a 12:37% reduction of the sentence-
level error rate (from 16:17% to 14:76%) and a 9:93%
reduction of the word-level error rate (from 4:23% to
3:81%) compared to not doing any compensation.

1. INTRODUCTION

Under certain conditions a neural network trained on
acoustic samples (speech feature vectors) of phonetic
units can be used as a class probability estimator [1, 2].
During recognition the estimates provided by network
outputs can be used by a Viterbi search [3] to �nd
the most probable path through the input speech fea-
ture vectors, as shown in Figure 1. For the path that
represents the actual spoken utterance to be probable
it is important that the neural network estimate good
posterior class probabilities. The posterior class prob-
abilities can be seen to depend on the prior class prob-
abilities using Bayes' rule: for an input vector X and

classes Ci, P (CijX) = p(X jCi)P (Ci)=p(X): For opti-
mum performance it is important that the prior class
probabilities match the actual frequency of occurrences
expected during recognition.
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Figure 1: A neural network based speech recognition
system.

In our experiments, classes are context-dependent

phonetic units. These units are based on di�erent acous-
tic realizations of a phone. We model the phonetic units
which take account of the left or right contexts but not
both. This is motivated in that inclusion of context-
dependent phonetic models can improve discrimination
(compared with using only context-independent pho-
netic models such as monophones). This follows be-
cause the portions of the human vocal tract that pro-
duce sound are constantly in motion and causes the
phonetic units to vary depending on context. Figure 2
demonstrates context-dependent phonetic modeling for
the digit /eight/.
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[sil<ei]  <ei>  ei>tc  <tc>   [th>sil]

context /sil/
/ei/ with right
context /tc/
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Figure 2: Context dependent phonetic modeling. For
example, one model of digit /eight/, where /sil/ repre-
sents silence or pause and [ ] means optional.

For instance the phone /ei/ would be split into three



parts, modeling it in the context of a sound to the
left (silence), a stationary part and in the context of a
sound to the right (t closure)1.

The use of context-dependent phonetic modeling re-
sults in disproportionate sample distributions. For ex-
ample in a training set that is composed of many utter-
ances of connected digits there are comparatively many
more instances of a particular context occurring inside
words (inner-word) than a particular context occurring
between words (inter-word). This is of course obvious,
since if there are 11 words in the vocabulary, the prob-
ability of seeing an inner-word context unit is about
1=11 whereas the probability of seeing an inter-word
context unit is about 1=112. Therefore in the training
set inter-word context units may occur about an order
of magnitude less frequently than inner-word context
units. In the following we demonstrate this argument
using statistics from a training set obtained from the
OGI Numbers Corpus [4] which we use for the exper-
iments in this paper. We describe the corpus in more
detail in the results section.

For the digit /eight/ the number of instances for
inner-word context units in the training set are:

1878 4096 3683 10616 1801
sil<ei <ei> ei>sil <tc> [th>sil]

On the other hand suppose the digit /eight/ is followed
by the digit /zero/. This would introduce one or more
inter-word context units. Here /eight/ and /zero/ may
optionally be separated by silence or pause. For exam-
ple inter-word context units include:

813
... <tc> [th>sil] [sil<z] ...

124
... ei>sil <tc> [tc<z] ...

Now suppose that /eight zero/ is the actual transcrip-
tion of an utterance to be recognized. Then for this

utterance it is easy to see that all the implied context
units have roughly the same frequency of occurrence
{ they occur only about once irrespective of whether
they are inner-word or inter-word context units. One
can argue that all of these context units are roughly
equally important for successful decoding of the utter-
ance. (Post-analysis of the test set shows that the com-
bination /eight zero/ actually occurred 30 times.)

During training of our neural network model we bal-
ance the frequency of occurrence of context units in the
training set to re
ect this 
atter prior present in the
test utterances.

1In our model a t closure occurring in right context gets ab-

sorbed into silence occurring in right context.

We will call the training samples of a class its in-
class samples and the in-class samples of other classes
its out-of-class samples. One way to balance the fre-
quencies of classes during network training, is to blindly
throw out training samples of the frequent classes. How-
ever, this is a counter-productive way because it may
destroy the natural prior class probabilities that may
be represented by the training samples (at least for
frequent classes) and will not fully use the available
training data. Other methods described in previous
work includes duplicating the sample number of infre-
quent classes, weighing the in-class sample training of
infrequent classes and compensating for di�erent prior
probabilities by the multiplication of class priors from
the test set and the division of class priors from the
training set [2]. Frequency balancing was also used in
an image recognition task [5].

For connected digit recognition we propose in this
paper roughly 
attening the prior for infrequent classes.
In Section 2 we propose separating classes into infre-
quent classes and frequent classes based on informa-
tion obtained from training data, with each class being
assigned a coe�cient that is informative of its prior.
In Section 3 we show how the neural network may be
trained with a modi�ed prior and how to modify the
neural network weight-update functions based on these
coe�cients. In Section 4 we present experimental re-
sults on a connected digit recognition task.

2. SEPARATING CLASSES INTO

INFREQUENT AND FREQUENT CLASSES

For a multi-layer perceptron (MLP) neural network,
let X represent an input vector with elements fxi : i =
1; � � � ; Dg, fCi : i = 1; � � � ;Mg M classes, fyi(X) : i =
1; � � � ;Mg the network outputs, fdi : i = 1; � � � ;Mg the
desired outputs for all output nodes, and fhj : j =
1; � � � ;Kg the outputs for all hidden nodes. Also, for a
1 of M classi�cation problem, let di = 1 if X belongs
to Ci and 0 otherwise.

Classes can be separated into two categories: a set
of frequent classes (denoted as A1) and a set of infre-
quent classes (denoted as A2), based on the estimates
of class priors. We then assign coe�cients bi that are
informative of class priors to classes. If Ci 2 A1, let
bi = 1; if Ci 2 A2, let 0 < bi < 1. The information
of class priors can be obtained for example by relative
frequencies of occurrence of classes' training samples.

Let N represent the total number of training sam-
ples and ni(i = 1; � � � ;M) the number of in-class train-
ing samples of class Ci. A method for using relative
frequencies of classes' training samples is:

Use a class' relative ratio of the number of out-of-



class training samples and in-class training samples,
(N�ni)=ni, as a reference to separate infrequent classes
and frequent classes. Ideally, if classes have equal amounts
of training samples, the ratio of a class' out-of-class
sample number and in-class sample number is (M �
1)=1. If (N � ni)=ni � (M � 1)=1, Ci 2 A1; otherwise,
Ci 2 A2. Therefore, coe�cients bi can be de�ned as:

bi =

(
1 if Ci 2 A1
(M�1)=1
(N�ni)=ni

if Ci 2 A2

For infrequent classes (Ci 2 A2) and 0 < bi < 1.

3. NEURAL NETWORK TRAINING WITH

A MODIFIED PRIOR

In the Introduction we showed that infrequent classes
may be under represented in the training set and that
they have a disproportionate number of out-of-class
samples compared to in-class samples. Another prob-
lem may occur when infrequent classes are short of
training samples, in which case their in-class sample
learning will be poor. We cannot do much about the
latter problem since it is di�cult to get enough train-
ing samples for infrequent classes because of their nat-
urally rare frequencies. However de-weighing the con-
tribution of out-of-class samples during training of in-
frequent classes may compensate for under-represented
classes.

We propose a modi�ed cross-entropy cost function
to balance infrequent classes' relatively larger amounts
of out-of-class sample learning:

" = �Ef

MX
i=1

[dilogyi(X)+bi(1�di)log(1�yi(X))]g (1)

Let wij represent the weight between output neuron i
and hidden neuron j, hj the output of hidden neuron

j, and �w
(n)
ij the weight update of wij when the nth

sample is trained using stochastic training.

�w
(n)
ij = ���ihj =

�
��(yi � di)hj ; if di = 1
��bi(yi � di)hj ; if di = 0

If 8i; bi = 1 the modi�ed cross-entropy cost function
becomes the standard cross-entropy cost function [6].
Note that 0 < bi � 1 so that the learning rate of class
i's output neuron is no greater than the global learning
rate �. This guarantees that the usual constraints on
the learning rate [7] is satis�ed.

A similar procedure holds for batch training. In
fact, for batch training summing over the training sam-
ples gives

�wij =
X
ni

(�(yi� di)hj)+ bi
X
N�ni

(�(yi� di)hj) (2)

which shows how bi adjusts the prior.
If the network parameters are chosen to minimize

the modi�ed cross-entropy cost function (Equation 1),
it can be shown that the outputs estimate the con-
ditional expectations of the desired outputs with an
adjusted value for infrequent classes:

yi(X) = EfdijXg=(EfdijXg+ bi(1�EfdijXg)):

For a 1 of M problem, di equals one if the input X
belongs to class Ci and zero otherwise. Therefore class
Ci's conditional expectation of the desired output is

EfdijXg =

MX
j=1

djp(Cj jX) = p(CijX)

. Therefore in the expectation

yi = p(CijX) if bi = 1, i.e., Ci 2 A1

yi > p(CijX) if 0 < bi < 1, i.e., Ci 2 A2 (3)

which balances the ratio of out-of-class samples to in-
class samples for infrequent classes.

4. EXPERIMENTAL RESULTS ON A

CONNECTED DIGIT RECOGNITION TASK

Using the speech recognition system shown in Figure 1,
we constructed a three layer MLP neural network model
as the probability estimator. The neural network has
56 input nodes, 200 hidden nodes and 209 output nodes
that correspond to 209 context-dependent phonetic classes.
It was trained using stochastic backpropagation and a
cross-entropy cost function. We separated the data set
into three parts by the ratios 3:1:1 for training, cross-
validation and test, respectively. The task is connected
digit recognition using the OGI Numbers Corpus { a
telephone speech corpus that contains \
uent" num-
bers. Callers were asked to leave their phone number,
birth date, or zip code. Examples of digit utterances
are /oh one oh nine three oh/, /two eight zero oh seven/
and /two one zero four two �ve three seven three �ve
three zero/. Utterances contain 1 to 12 digits.

We trained three neural networks: (1) using throw-
away policy to balance training samples and standard
cross-entropy cost function, called net1 ; (2) using all
the training data and standard cross-entropy cost func-
tion, called net2; (3) using all the training data with the
modi�ed cross-entropy function shown as Equation 1,
called net3. The classes were separated into 146 infre-
quent classes and 63 frequent classes.

We did experiments to compare net3 with net2 in
terms of the classi�cation rate at class level based on
the cross-validation set. Among the 209 classes, the



Estimator net1 net2 net3

error(sentence) 18.45% 16.17% 14.76%
error(word) 4.94% 4.23% 3.81%

Table 1: Digit Recognition results on OGI Numbers
Corpus (doing evaluation on 1626-sentence test set).

classi�cation rates of 171 classes (including 130 infre-
quent classes) were increased, 28 classes (including 6
infrequent classes) decreased, and 10 classes (includ-
ing 10 infrequent classes) did not have available cross-
validation data. These results show that the modi�ed
cross-entropy cost function, which changes the prior for
infrequent classes, also improves their classi�cation ac-
curacy. Figure 3 shows these results in terms of relative
di�erences of classi�cation accuracy.
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Figure 3: Frame level classi�cation accuracy between
net3 and net2 [absolute di�erence in percent accuracy]
as a function of number of training samples. The prior
for infrequent classes were changed during training.

Experimental results on the test set, Table 1, show
that net3 resulted in 20% reduction in recognition er-
rors at the sentence level and 22:87% at the word level
as compared to net1, and 12:37% and 9:93% at sentence
level and word level respectively, as compared to net2.
The number of word insertion and deletion decreased
from 248 (net1) and 182 (net2) to 152 (net3). The re-
sults of McNemar's signi�cance test [8] show that the
observed di�erences would arise by chance on occasion
about 0:1% from net1 to net3 and 1:4% from net2 to
net3. These results indicate that the improvement of
recognition performance is statistically signi�cant.

5. CONCLUSION

We observed that the prior over a training set for in-
frequently occurring context units may not be matched
to any one particular test utterance. We proposed to
balance the prior for such infrequently occurring con-
text units by de-weighing the contribution of out-of-
class samples in the cross-entropy cost function. A
frame level analysis showed that a model trained us-
ing this modi�ed prior models the inter-word context
units better. We showed that this translates into sta-
tistically signi�cant reduction in word-level and more
importantly sentence-level error rate.
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