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ABSTRACT

We illustrate how high-level knowledge from the musical do-
main may be integrated with sophisticated signal processing algo-
rithms within a system for separating possibly overlapping partial
frequency components from polyphonic music. Musical knowl-
edge utilized in our system is in the form of constraints on the
time-frequency behaviors of musical signals such as the frequency
locations of notes on the western musical scale and the presence
or absence of vibrato in each note. For any given signal scenario,
these constraints help in appropriately initializing and adjusting a
set of algorithms for constant-Q processing, spectral peak pick-
ing, and multihypothesis tracking through Kalman filtering. As
demonstrated by the evaluation of our system with a variety of
signals containing two simultaneously played violin notes, the ap-
plication of these algorithms results in the accurate separation of
individual partials.

1. INTRODUCTION

The problem of isolating individual partial frequency components
of simultaneously occurring musical notes arises in a variety of ap-
plications such as automatic music transcription, intelligent music
editing, pitch tracking, and rhythm tracking [1, 2]. Signal process-
ing solutions involving a combination of time-frequency analysis,
spectral peak picking, and tracking may be brought to bear on this
problem. While solutions that rely on time-frequency analysis per-
formed using uniform or constant-Q filterbanks [3] are suitable for
isolating partials within single musical notes, these solutions gen-
erally fail when applied to polyphonic music. The primary cause
for failure is the fixed tradeoff between time and frequency resolu-
tion at any given point in the time-frequency plane.

A remedy for the drawbacks of fixed resolution time-frequency
analysis techniques is to adapt the analysis filters at each point
in the time-frequency plane in a data-dependent manner. One
such adaptation strategy developed by Parks and Jones [4] involves
choosing at each time-frequency point a filter that maximizes a
kurtosis-like local energy concentration measure. This strategy
suffers from the drawback that it is computationally very expen-
sive due to the exhaustive search overO(102) candidate filters
performed at each time-frequency point. It should be noted that
for each candidate filter a new time-frequency analysis has to be
performed over a subregion surrounding the time-frequency point
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under consideration. Another major drawback in using the concen-
tration measure is that it does not utilize any knowledge about the
time-frequency behaviors of musical signals (such as the harmonic
relationship between partials of a note).

We have designed and implemented a system that adopts an
alternative analysis filter adaptation strategy based upon utilizing
higher level musical knowledge. This strategy relies on an itera-
tive procedure that follows the Integrated Processing and Under-
standing of Signals (IPUS) paradigm [6]. We describe the com-
ponents of our IPUS-based system in Section 3 after providing a
brief overview of the separation problem in Section 2. Details per-
taining to the implementation of our system and its performance
for signals with two simultaneous violin notes are presented are
presented in Section 4. Finally, we demonstrate in Section 5 that
even with the added advantage of using musical knowledge, time-
frequency analysis performed using our system is still an order of
magnitude computationally more efficient than the kurtosis-based
filter adaptation strategy.

2. SEPARATION PROBLEM

The problem of separating individual musical partial frequency
components from polyphonic music may be formally described
by considering the following commonly-used model for a musical
note withM partials:

x(t) =

MX
k=1

ak(t)cos [!k(t) + �k] : (1)

Here,ak(t), !k(t), and�k are the instantaneous amplitude, in-
stantaneous frequency, and instantaneous phase, respectively, of
thek-th partial frequency component ofx(t). The separation prob-
lem involves estimatingak(t) and!k(t) for each partial within
a mixture of simultaneously occurring musical notes. In our re-
search, we have assumed that there are at most two notes occur-
ring simultaneously at any given time. This assumption was made
on the basis that the separation problem is fairly complex even in
two note scenarios and offers ample scope for demonstrating the
benefits of our novel system.

3. SYSTEM FOR SEPARATING PARTIALS

We have addressed the separation problem through the develop-
ment of a system that utilizes a combination of time-frequency
analysis, spectral peak picking, and tracking. Time-frequency
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Figure 1:IPUS-based strategy for adapting the filters used in
the time-frequency analysis of polyphonic music signals.

analysis is performed using a filterbank to resolve spectral con-
tributions from each partial in the time-frequency plane. The anal-
ysis filters in the filterbank are adapted in a manner which al-
lows the separation of partials that are possibly overlapping in
the time-frequency plane. Significant spectral peaks are identi-
fied in the filterbank outputs and the peaks are then used to form
time-frequency-amplitude trajectories corresponding to the par-
tials present in the signal. Themultihypothesis trackingalgorithm
from the area ofmultitarget tracking[7] is utilized in forming these
trajectories. The tracking algorithm involves modeling the time-
frequency-amplitude evolution of a partial by means of state equa-
tions, associating peaks with partials on the basis of this model,
and finally utilizing Kalman filtering to form state trajectories for
each partial from its associated peaks.

The key component of our overall system is the strategy uti-
lized for adapting the filters in the time-frequency analysis filter-
bank. We have designed this strategy to follow the IPUS black-
board paradigm. The IPUS paradigm facilitates the systematic in-
corporation of knowledge regarding local and global constraints
on the time-frequency behaviors of musical signals into the fil-
ter adaptation process. Within our IPUS-based strategy, the poly-
phonic musical signal is processed in a block-wise manner through
the iterative procedure outlined in Figure 1. We now describe the
major steps within an iteration of this procedure.

3.1. Prediction

Prediction is the process of using previously identified partials in
order to hypothesize their time-frequency evolution in the current
processing block. We perform prediction on a partial by first car-
rying out a least-squares straight-line fit to its corresponding track.
The standard deviation of the partial's instantaneous frequencies is
also computed. The straight line is then extrapolated into the cur-

rent processing block and a frequency subregion which is 3 stan-
dard deviations to either side of this line is identified. Assuming
a normal distribution for the partial's instantaneous frequency, this
subregion represents the 99% confidence region for the evolution
of the trajectory corresponding to the partial.

3.2. Adjusted Constant-Q Processing

The predicted time-frequency behavior of partials in the current
processing block is utilized to alter the analysis filters in a constant-
Q filterbank with Gaussian filters. Gaussian filters were chosen on
the basis of the well-known property that they have the least time-
frequency uncertainty. The center frequencies of the filters in the
filterbank are uniformly spaced along the frequency axis and the
impulse response of thei-th filter is given by:

hi[n] =

�
A expf��n2g exp

�
j 2�fi

fs
n
	
; jnj � ni

0; jnj > ni
:

(2)
Herefi is the center frequency of the filter,fs is the sampling rate,
ni is the time index before which the magnitude of the impulse
response decays to a small value�, A is a scaling factor which
ensures that the filter has unit energy, and� is a parameter that
controls the bandwidth of the filter. In their default setting, the�
parameter for the filters are adjusted to follow a constant-Q rule.
We utilized the filter's frequency response [8] to arrive at the fol-
lowing relation:

� =
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2 ln(�)
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Qfs
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; (3)

whereQ is the Q-factor of the filterbank (which in our case is 34
because it corresponds to quarter-tone spacing [3]). Once predic-
tions have been carried out in the current processing block, the
default� settings of the filters are adjusted such that they have
enough frequency resolution to separate the predicted partials.

3.3. Discrepancy Detection

Discrepancy detection is the process of identifying mismatches be-
tween the predictions and the tracks formed from the results of ad-
justed constant-Q processing. During this process, we only need
to compare a prediction with tracks which are within its time-
frequency vicinity. Therefore, we perform “clustering” to first
group tracks and predictions which are in close spectral proxim-
ity in the current analysis interval. Discrepancy detection is then
performed within each cluster. Besides the obvious benefit that
clustering simplifies the process of discrepancy detection, it also
greatly aids the diagnosis or explanation of these discrepancies.
This is because discrepancies which are close to each other in the
time-frequency plane generally have a common cause.

During the process of discrepancy detection, the following
three different types of discrepancies are identified within each
cluster: (a)Missing data:Discrepancy when no matching track is
found for a prediction. (b)Missing prediction:Discrepancy when
no matching prediction is found for a track. (c)Missing consis-
tency: Discrepancy when a prediction-track pair do not match in
terms of statistics such as frequency variance or frequency modu-
lation rate.

3.4. Discrepancy Diagnosis

The process of discrepancy diagnosis attributes probable causes to
the discrepancies identified in the current processing block. Dis-



crepancies within a cluster are all diagnosed simultaneously since
they are most likely to have a common cause. For each cluster, the
diagnostic process involves the utilization of a set of “distortion
operators” to provide a mapping between an “initial state” consist-
ing of the predictions within the cluster and a “goal state” made up
of the tracks within the cluster. Distortion operators serve the two-
fold purpose of identifying missing information in the initial state
and identifying improper processing of the data. In particular these
operators are used to indicate (a) the commencement and termina-
tion of partials, (b) filters with improper time-frequency resolution
tradeoff or filters that are improperly matched to partials with fre-
quency modulation (vibrato), and (c) improper processing during
spectral peak picking. The diagnostic process now involves using
a combination of these distortion operators to explain the discrep-
ancies with a cluster.

The central idea used in diagnosis involves hypothesizing the
true nature of partials within a cluster on the basis of the processed
data. This requires knowledge about all possible cluster scenarios
that can arise in the context of musical signals with at most two
notes. Through an analysis of two-note signals, we have identified
45 different cluster scenarios [5]. It is now the job of our four-step
diagnostic process to prune this list of 45 scenarios down to a few
specific scenarios as the likely candidates for expressing the true
nature of the partials within a cluster. This process, which is out-
lined in Figure 2, uses criteria such as number of predictions, the
nature of the discrepant cluster, and the number of notes found in
the signal. It should be noted that the numbers shown in Figure 2 at
the ends of the branches correspond to index numbers for our clus-
ter scenarios. The top candidate from the list of pruned scenarios
is chosen as the most likely scenario if the cluster is being diag-
nosed for the first time. During subsequent diagnoses, different
candidate scenarios may be chosen if discrepancies still remain.
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Figure 2:Diagnostic Process.

Based upon the chosen scenario, we hypothesize a set of pos-
sible distortion operators that could potentially cause the discrep-
ancies found in the cluster. This is performed by using a lookup
table that is indexed by a combination of the number of predictions
in the cluster, the number of partials within the chosen scenario,
the number of partials with vibrato in the chosen scenario and the
types of discrepancies identified in the cluster.

3.5. Reprocessing Planning and Reprocessing

The sequence of diagnostic operators associated with a cluster are
used to choose a suitable reprocessing plan from a library of plans.
The execution of this plan results in a modification of the predic-
tions within the cluster (if necessary) and a reprocessing of the data
(if necessary) through an altered set of analysis filters, an altered
peak picking algorithm, and finally the tracking algorithm.

Once reprocessing has been completed, the processes of dis-
crepancy detection, diagnosis, and reprocessing are again carried
out on the cluster. This is repeated until the cluster is devoid of
discrepancies or until five iterations of the reprocessing loop are
performed on the discrepant cluster. Persisting discrepancies are
dealt with by replacing the tracks with plausible time-frequency
trajectories that are obtained on the basis of other harmonically
related partials present in the processing block.

4. IMPLEMENTATION

We have implemented the system described in the previous sec-
tion within the recently introduced IPUS C++ Platform (ICP) [9].
ICP is a software environment which provides inherent support
for the main components of the IPUS architecture. Within any
IPUS-based system, problem solution involves a series of trans-
formations between multiple abstract signal representations (such
as waveform and tracks) that are stored on a hierarchicalblack-
board database. Signal processing algorithms which help carry
out these transformations are executed in accordance with a set of
control plans. The appropriate control plans that need to be in-
voked for a particular signal scenario are chosen using aRESUN
control plannerthat relies on decomposing the system's goals into
a goal/plan/subgoal hierarchy. ICP provides a rich library of base
classes which may be utilized to derive and maintain application-
specific versions of the blackboard database and the RESUN con-
trol planner. Additionally, ICP also includes a trace facility that
allows all internal structures and operations of the system to be
monitored using textual and graphical displays.

4.1. Evaluation

We have systematically evaluated the performance of our system
using a variety of signal scenarios involving two simultaneously
played violin notes. These scenarios, which were generated using
the Ensemble music synthesis system [10], had note combina-
tions corresponding to intervals of a fifth, a fourth, a major third,
a major sixth, a minor third, a minor sixth, and a second. Each of
these combinations was generated both with notes having vibrato
and notes having no vibrato. Our system accurately separated the
partials in each of the generated scenarios.

We now present an example from this evaluation that illus-
trates the sophisticated nature of the processing that is carried out
within our system. The two-note signal scenario used in this ex-
ample consists of a violin note C (fundamental frequency = 523
Hz) already playing when the system begins processing the data.
Another violin note, the E with a fundamental frequency of 659 Hz
and having a vibrato, comes on at time 0.32 secs. The results of
processing this scenario are shown in Figure 3. These results show
that our system successfully separated the partials in the musical
signal.
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Figure 3:Processing of the signal block from 0.25 sec to 0.5
sec in the example scenario. Predictions made on the ba-
sis of partials identified in the first signal block from 0 to
0.25 secs are shown in plot (a). The gray areas indicate
possible regions over which the time-frequency trajectories
corresponding to the predicted partials are most likely to
evolve. Plot (b) shows the tracks obtained from the results of
constant-Q processing where the analysis filters have been
adjusted according to the predictions. The gray regions in
plot (c) indicate clusters of tracks formed using the clustering
algorithm. Finally in plot (d), we show the results of repro-
cessing clusters which had discrepancies within them.

5. COMPUTATIONAL COMPLEXITY

An alternative to our knowledge-based approach to time-frequency
analysis is a data-dependent approach that relies on a numerical
measure of time-frequency energy concentration [4]. This numeri-
cal approach involves first performing hundreds of time-frequency
analyses each with a different set of analysis filters. At each time-
frequency point in each analysis a two-dimensional energy con-
centration measure, which is similar to the kurtosis measure used
in statistics, is then evaluated. Finally, a composite time-frequency
representation of the signal is formed by picking time-frequency
points from different time-frequency analyses in a manner such
that the kurtosis value at each point is maximized. In comparing
this kurtosis-based filter adaptation strategy with our knowledge-
based strategy, we note that our strategy enjoys the advantage of
incorporating musical knowledge into the search for the appropri-
ate analysis filters. Furthermore, we have been able to demonstrate
that our strategy is alsoat leastan order of magnitude more com-
putationally efficient.

In our knowledge-based system, the bulk of the multiplica-
tions are utilized for the time-frequency processing and reprocess-
ing of the signal through the analysis filterbank. While the peak
picker and Kalman tracker require less than 1% of the multiplica-
tions used in the time-frequency processing, the other parts of the
processing such as prediction, discrepancy detection, and diagno-

sis have negligible computational requirements. The number of
multiplications required for processing the signal through a filter-
bank ofN filters overM temporal points is:

C2 = MN
2 (4)

For an identical number of analysis filters and temporal points, the
number of multiplications utilized in the kurtosis-based adaptation
strategy has been shown to be [4]:

C1 = W [8N + 2NM log
2
N + 22NM+ (5)

24NM(log
2
(2N) + log

2
(2M))]

whereW is the total number of analysis filters over which the
search is performed at each time-frequency point. We see from (4)
and (4) that forM = 256 andN = 1024, C2 is 2% ofC1. There-
fore, even if the data is reprocessed 5 times entirely (a highly un-
likely scenario), our knowledge-based system would still use only
a tenth of the computation demanded by the numerical approach.
This computational efficiency along with the advantages of bas-
ing the processing on musical knowledge makes our novel system
highly attractive for separating musical partials.
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