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ABSTRACT
In maximum-likelihood based speech recognition systems, it is
important to accurately estimate the joint distribution of feature
vectors given a particular acoustic model. In previous work, we
showed we can boost accuracy in this task by modeling the joint
distribution of time-localized feature vectors along with statistics
relating those feature vectors to their surrounding context. In this
work, we evaluate information preserving reduction strategies for
those statistics. We claim that those statistics corresponding to
spectro-temporal loci in speech with relatively large mutual infor-
mation are most useful in estimating the information contained in
the feature-vector joint distribution. Furthermore, we claim that
such statistics are most likely to generalize. Using an EM algo-
rithm to compute mutual information between pairs of points in the
time-frequency grid, we verify these hypothesesusing both overlap
plots and speech recognition word error results.

1. INTRODUCTION

A primary goal in maximum-likelihood based speech recogni-
tion is to accurately estimate the joint distribution of acoustic
feature vectors for a given statistical model. That is, we wish
to estimate the feature-vector joint distribution P (XT

1 jM) where
fXT

1 g = fX1; : : : ;XT g andXt is a time-localized feature vector.
Improving the accuracy of P (XT

1 jM) can often improve discrim-
inability between different models and therefore reduce word error
rate.

Hidden Markov models (HMMs) are the most commonly as-
sumed underlying statistical model under which P (XT

1 jM) =P
Q

Q
t
P (XtjQt;M)P (QtjQt�1;M); or the sum is replaced

by a max under the Viterbi approximation. Q corresponds to vari-
ables comprising the hidden Markov chain.

Under the HMM assumptions, Xt is conditionally indepen-
dent of its past given the current hidden Markov state variable Qt.
An important sub-goal, therefore, is the estimation of P (XtjQt) .
Because natural signals are not actually governed by HMMs, it is
unrealistic to assume that the burden for determining the context-
dependentdistribution ofXt can be placed completely onQt. Rep-
resenting the context as :Xt = fX1; : : : ;Xt�1;Xt+1; : : : ;XT g,
this essentially is a requirement that I(:Xt;Qt) � I(Xt;:Xt)
and I(Qt;Xt) � I(Xt;:Xt) where I(Y ;Z) is the mutual in-
formation between variables Y and Z . A necessary condition,
therefore, is that the number of states have the lower bound
jQtj � 2I(Xt;:Xt) . Even with this condition satisfied, however,
there is no guarantee training algorithms can find the correct map-
ping between hidden state Qt and acoustic distribution Xt. This
is the conditional independence problem associated with HMMs.

There have been many attempts to model the feature-vector
joint distribution more accurately. Some involve estimating the
short-time joint distribution of feature vectors [5] and others add to
that a conditional dependence on additional variables along with a
distribution of those variables [7].

In [1], we showed that we can model information contained in
the feature-vector joint distribution by modeling the joint distribu-
tion of time-localized feature vectors along with statistics relating
those feature vectors to their surrounding context, i.e.:

P (Xt;
d

dt
Xt;M(

[
l2Ct

Es[XtX
T
l ])jQt); (1)

where Ct is a context around time point t, Es[] is the short-time
expected value over a duration of length s, and M(�) is an infor-
mation preserving reduction strategy. The delta ( d

dt
Xt) and the

cross-correlational (
S

l2Ct
Es[XtX

T
l ]) features determine short-

time statistics relating the base-feature vectorXt to its surrounding
context. It can be argued, therefore, that this captures information
about the underlying feature-vector joint distribution.

The correlation information is estimated using the modcross-
gram (MCG), a way of computing the cross-correlation between
feature channels:

Ri;j(t; `) =

NX
k=0

xi(t+ k)xj(t+ k + `)wk;

where xi is the ith feature channel, t is the starting offset within the
signals, ` is the correlation lag,N+1 is the number of points used to
compute the correlation (corresponding to s in Es[] of Equation 1),
and wk are windowing coefficients. ` ranges over a time-span
corresponding to the range of Ct in Equation 1. Using compressed
envelopes as feature channels, we demonstrated a significant word
error rate reduction in a noisy test condition with such a model.

In [1], we chose a data-independent reduction strategy M(�).
In this paper, we argue that we can obtain a better reduction strategy
by retaining MCG coefficients corresponding only to pairs of time-
feature points in training data with a strong statistical dependence
(i.e., large mutual information). For a given number of system pa-
rameters, we believe such a strategy will more accurately represent
information contained in the feature-vector joint distribution and
generalize better than a reduction strategy using weaker statistical
dependencies.

Section 2 introduces our hypotheses. Section 3 describes our
method for computing mutual information. Section 4 demonstrates
how strong statistics in speech generalize better than weaker ones.
Section 5 augments our evidence with word error rate improve-
ments. Section 6 attempts to gain intuition via an information
density plot. And Section 7 concludes and describes future work.

2. STRONG STATISTICS ARE ACCURATE AND
GENERALIZE

The dependencies between a collection of random variables
y1; : : : ;yN (governed by P (y1; : : : ;yN )) can be described as



a graph where each node represents a variable and each edge rep-
resents a dependence relation between its two variables[8]. Chow
showed that the best tree-dependent approximation (one whose
graph is a tree) of such a distribution, in terms of least Kullback-
Leibler distance, can be constructed by finding a maximum weight
spanning tree of the original graph with edge weights set as the
mutual information between the corresponding two variables [2].

Assuming, as we argue in [1], that the joint distribution of Xt

and the statistics
S
l2Ct

Es[XtX
T
l ] captures important information

about the feature-vector joint distribution, what fixed size subset of
the statistics can best represent this distribution? With motivation
from Chow’s results, we argue that a subset containing strong statis-
tics are better than a subset containing weak ones,where we define a
strong and weak statistic according to the relative magnitude of mu-
tual information [3] between the corresponding features elements
in a training set. Intuitively, if we could choose only one of the two
random variables Y andZ as an information source about variable
X (i.e., we could either model P (XjY ) or P (XjZ)), w.l.o.g., we
would choose Y if I(X;Y ) > I(X;Z). Similarly, a variable Z
that is informative about Xt;i (the ith element of feature vector
Xt) should have relatively large I(Z;Xt;i). In other words, if we
define the quantity I(i; j; `) = I(Xt;i;Xt�`;j) (where variation
over t defines the sampling ensemble), then the set of K feature
pairs with strongest statistics are defined as:

f(ik; jk; `k) : 1 � k � Kg = argKmax
i; j; `

I(i; j; `):

Assuming K is large enough so all elements of Xt are included,
these pairs should provide significant information aboutXt. This,
therefore, defines a simple MCG reduction method: choose the
(size 2K because of symmetry) set:

fRik;jk(t; `k);Rjk;ik (t;�`k) : 1 � k � Kg:

The use of this set, therefore, should be more informative aboutXt

than an equal sized weaker set.
Another source exists, however, providing information about

Xt;i , namelyQt. We must choose variables therefore that not only
have information about Xt;i , but also do not include information
already provided by Qt about Xt;i . In other words, we must
choose a variable Z 2 fXt�`;j : 8`; jg such that I(Xt;i;ZjQt)
is large. We could estimate I(Xt;i;ZjQt) directly and choose Z
accordingly. Alternatively, one heuristic is to choseZ to maximize
the upper bound I(Xt;i;ZjQt) � I(Xt;i;Z)�I(Qt;Z)[3]. That
is, choose Z such that I(Xt;i;Z) is large and I(Z;Qt) is small.
I(Z;Qt) will more likely be small if Z is chosen from a time
frame other than t. But because I(Xt;i;Z) � I(Xt;i;Qt) �
I(Xt;i;ZjQt) � I(Xt;i;Z) + I(Xt;i;QtjZ) [3], choosing Z
with a large I(Xt;i;Z) can produce a range of larger possible
values for I(Xt;i;ZjQt) than if we chose Z otherwise. An even
simpler heuristic, therefore, is to choose Z with large I(Xt;i;Z).
This, as suggested above, is what we investigate in this paper.

Will, however, the set of strong correlation pairs obtained from
training data generalize to test data and noisy conditions? We ar-
gue that both the strongest and weakest statistics of a natural object
(i.e., either a visual or an auditory object) are the most consistent
with respect to samples of that object, with the strongest statis-
tics being the most descriptively efficient. The strong statistical
features of an object determine its defining characteristics, but the
defining characteristics of an object are those traits that generalize
best across all object instances. Furthermore, the strong statistical
features will be those that remain most salient under distortions
(i.e., noise). We explain with a simple analogy, descriptions of a
drinking cup. “A cup has a concave cavity for holding liquid, is
small enough to be held, has a relatively level base, etc.” Such
strong comparative statistics will be descriptively correct for al-
most all examples we encounter. “A cup has a handle, it is colored
blue, it is translucent, etc.” Such middle-weight statistics are true
at times, false at others. “A cup looks like an elephant, acts like an

inviscid compressible fluid, etc.” Such weak statistics are almost
always descriptively incorrect. Furthermore, we could describe a
cup by listing all its unrepresentative properties, but greater de-
scriptive efficiency is achieved by listing the archetypal features.
We argue that the same phenomena holds for an auditory object,
and in particular, descriptions thereof comprised of mutual infor-
mation between pairs of auditory features. In Section 4 we provide
empirical evidence for this phenomena in real speech data.

3. MUTUAL INFORMATION COMPUTATION USING EM

The mutual information between two continuous random variables
X and Y is defined as [3]:

I(X;Y ) =

Z
p(x; y) log

p(x; y)

p(x)p(y)
dxdy:

In practice, we have access only to samples f(xi; yi) : 1 � i � Ng
drawn from the distributions governing X and Y . We therefore
must use an estimation method.

One method computes a 2-dimensional histogram and then
performs a discrete version of the above computation. Another
method assumes thatX andY are jointly Gaussian distributed with
correlation coefficient �xy . If so, the quantity can be computed
analytically [4] as Il(X;Y ) = � 1

2 log2(1 � �2
xy): Because �xy

captures the linear dependence between X and Y regardless of
their joint distribution, we call this the linear mutual information.
A third method fits a Gaussian mixture distribution to the sampled
data using, say, EM. Unfortunately, we know of no analytical
formula that, like in the single componentcase, maps from mixture
parameters to mutual information. We can instead use numerical
integration, or even simpler, sample the resulting distribution for
the discrete computation.
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Figure 1: Statistical overlap between two independent 30 minute
sections of digits+.

While the first non-parametric method is fairly simple, it suf-
fers from several problems including the need for bias correction
[6], a large number of histogram bins, and large amounts of “train-
ing” data. Because we need to compute thousands of mutual
information values, this approach is not viable since thousands of
simultaneously maintained 2-dimensional histograms would be re-
quired. Also, while the linear mutual information approximation is
computationally simple, it does not capture potentially important
non-linear statistical dependencies contained in distributions not
well approximated by a single component Gaussian.

Therefore, we chose the third parametric method which we call
Img . We use the EM algorithm to fit a 5 component full covariance
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Figure 2: Statistical overlap between two independent 64 minute
sections of Switchboard.
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Figure 3: Statistical overlap between a 64 minute Switchboard and
30 minute digits+ section.

Gaussian mixture to each data set (for our data sets, more than 5
components showed no appreciable benefit). The resulting density
is sampled at points on a 250x250 grid (again, greater values did
not appreciablyeffect results). In each dimensiond = 1;2, the grid
spans the range [mini(�i;d � 3�i;d);maxj(�j;d + 3�j;d)] where
�i;d and �i;d are the mean and standard deviation of component i
for dimension d. This surface is normalized and used in the discrete
computation. With one mixture component, the method produces
results almost identical to linear mutual information. For a larger
number of components, the resulting values almost always get
larger (i.e., we empirically find Img � Il) indicating the addition
of non-linear ingredients of the true mutual information.

4. OVERLAP OF STRONG STATISTICS IN SPEECH

In this section, we verify the hypothesis that the strongest statistics
in speech generalize better than weaker ones. We look at mutual
information between pairs of points in the time-frequency plane –
we find those pairs with large value in one speech corpus are also
large in an independent corpus.

Each corpus has telephone bandwidth and is processed by a
22 channel quarter-octave FIR filter bank. Each channel is then
rectified, band-pass filtered (restricting the modulation energy to a
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Figure 4: Statistical overlap between a 64 minute Switchboard and
30 minute 10dbSNR digits+ section.

range between roughly 1 and 35Hz), downsampled to 80Hz, and
cube-root compressed. The resulting envelopes define the time-
frequency gridXt. We compute Img(i; j; `) = Img(Xt;i;Xt�`;j)
for various i; j and for ` 2 0 : : : 17 (0 to 200ms into the past). We
computeK = 22�22�17�22�23=2 = 7975 mutual information
values (the 253 upper triangular values for which ` = 0 and j � i
are not needed for obvious reasons).

For each corpus C, we obtain the sorted set IC(k) =
f(ik; jk; `k) : 0 � k < Kg such that Img(ik; jk; `k) �
Img(im; jm; `m) for k < m. We divide the index range
0 � k < K into N equal sized subsets Rn : 1 � n � N
such that Rn = fk : (n � 1)K=N � k < nK=Ng. For two
corpora C and D, we define the percentile-region overlap ratio as:

OC;D(n) =
jIC(Rn) \ ID(Rn)j

jRnj
;

where 1 � n � N is the bin number, and IC(Rn) are the set
of time-frequency pairs contained in the nth bin. For example, if
N = 20, OC;D(1) indicates the percentage of the strongest 5%
of time-frequency pairs in corpus C that are also contained in the
strongest 5% in corpus D, OC;D(2) indicates the percentage of
overlap in the non-intersecting next strongest 5%, etc.

For all plots, N = 20 and each two corpora have no speaker
overlap. Figure 1 shows the plot for two independent 30 minute
sections of digits+, a telephone quality database of isolated digits
and control words from Bellcore. The figure shows a relatively
large overlap for both strong statistics (lower bins numbers) and
weak statistics (higher bin numbers) and the middle-weight statis-
tics show lower overlap. Figure 2 shows the plot for two inde-
pendent 64 minute randomly-chosen sections of the Switchboard
database. We see a trend similar to the previous figure. The next
two plots show inter-corpora prediction. Figure 3 (resp. figure 4)
shows the plot between a 64 minute section of switchboard and a
30 minute section of digits+ (resp. digits+ corrupted by 10db SNR
additive car noise recorded over a cellular phone). In both plots,
the strong statistics have a significantly greater overlap than the
weaker ones. Therefore, it seems likely that if we select a set of
strong statistics from one corpora, they are likely to generalize.

5. SPEECH RECOGNITION RESULTS

To lend further evidence to our hypothesis,we evaluated both strong
and weak MCG features in a hybrid artificial neural network/hidden
Markov model (ANN/HMM) speech recognition system [5] using
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Figure 5: ASR word error rate (WER) results for digits+ comparing
strong and weak MCG features used in addition to baseline.

digits+. The MCG parameters are the same as in [1]. Each word
error rate (WER) displayed is obtained using data from 200 speak-
ers totaling 2600 examples from 4 jackknifed cuts – scores shown
are the average of 4 tests in which 150 speakers were used for
training and 50 different speakers used for testing. Before each
ANN training, all weights were set to small random values.

The far left of Figure 5 shows the baseline score consisting of
1 frame of JRASTA [5] features plus deltas (17 total) and a 572
hidden unit ANN probability estimator. Moving to the right, each
point shows the addition of MCG features, in increments of 20,
starting from the strongest and moving down or the weakest and
moving up in strength. The number of hidden units of the ANN is
adjusted to equalize the number of free parameters in each case.

As can be seen, the addition of strong MCG features signifi-
cantly reduces the error rate (at 200 strong MCG features, the WER
is insignificantly different then our best result [1]). The addition
of weak MCG features, however, significantly increases the error
rate probably because the number of hidden units decreases while
adding useless input features. This plot therefore demonstrates that
we can boost recognition performance by adding strong MCG fea-
tures, presumably due to more accurate estimation of information
contained in the feature-vector joint distribution.

6. WHERE IS THE INFORMATION IN SPEECH?

Where in the time-frequency plane can we find information about
Xt;i? Figure 6 shows the information density (i.e., Img(d; `) =
avgi�j=dImg(i; j; `)) in bits per unit area spanning 425ms into
the past computed from a 2 hour random selection of Switchboard.
As can be seen, significant information can be gained about Xt;i.
Of course, the mutual exclusivity of this information as well as the
quantity already provided byQt is not shown. The degree to which
the HMM assumptions are invalid, however, should correspond to
the degree to which the addition of information in the surrounding
acoustics is useful about Xt;i. Our speech recognition results
seem to indicate that strong information in the surrounding acoustic
context is indeed useful.

7. CONCLUSIONS

We claim that strong statistics (i.e., correlation between pairs of
time-frequency points with large relative mutual information) are

0 50 100 150 200 250 300 350 400

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (ms)

F
re

qu
en

cy
 D

iff
er

en
ce

 (
O

ct
av

es
)

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6: The information density of a randomly selected 2-hour
section of Switchboard (in bits per unit area).

better both for estimating the actual feature-vector joint distribu-
tion and for generalization than are weaker statistics. We provide
evidence for these claims using both overlap plots and speech
recognition word error rate results.

We are currently working on methods to determine which set of
strong MCG features are best and how they should be represented
(i.e., should further transformations be performed). Ultimately,
we would like to select MCG features based on a better indication
of their utility such as a large I(Xt;i;ZjQt) or a measure that
also considers their informational mutual exclusivity (e.g., large
I(Xt;i;Z1jQt), I(Xt;i;Z2jQt; Z1), etc.).
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Dan Ellis, Jeff Zweig, Nelson Morgan, Steve Greenberg, and other
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