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ABSTRACT

The restoration of an incomplete image from a known
part and experimental data in the form of the Fourier
amplitude squared sums is formulated as a Bayesian es-
timation problem. This problem is motivated by the
structure completion problem in x-ray fiber diffraction
analysis. An appropriate prior of uniformly distributed
impulses is used. The Bayesian MMSE and MAP es-
timates are obtained. Simulations are used to compare
the performance of the estimates. The results show that
the MMSE estimate significantly outperforms the other
estimates. The restored images exhibit some bias to-
wards the known part of the image. This can be partly
reduced by an unbiasing procedure.

1. INTRODUCTION

X-ray crystallography is used to study three dimensional
(3-D) molecular structures at atomic resolution. A crys-
talline specimen of the molecule under study is irradi-
ated by a monochromatic x-ray beam, and the resultant
scattering pattern (diffraction pattern) is recorded for a
variety of specimen orientations. Since the scattering is
weak, the diffracted wave field is the Fourier transform
of the electron density distribution of the molecule. A
crystalline (periodic) specimen, which is required to ob-
tain a usable signal to noise ratio, results in the diffrac-
tion pattern being a Nyquist sampled Fourier transform
of one period of the image. The measured data (inten-
sity) are the squares of these samples. The support of
one period of the image is termed the unit cell.

The image % (x) is represented as the convolution
of the electron density of one period � (x)with the crys-

tal lattice l (x), i. e. ,

% (x) = � (x)
 l (x); (1)

where l (x) =
P

(m;n;p)2Z3 �(x�ma�nb�pc). The
Fourier Transform (FT) of % (x) is

Fh = F (u)L (u); (2)

where F (u) = F[� (x)], F is the Fourier transform,
h = (h; k; l); L (u) = F[l (x)] which is also a latticeP
h2Z3 �(u � ha� � kb� � lc�) and F

h
= F (u =

ha��kb�� lc�). L (u) is called the reciprocal lattice.
X-ray fiber diffraction is a crystallographic tech-

nique used to study polymers that do not form regu-
lar crystals [1]. The specimen is called a fiber and is
composed of an aggregate of small crystallites that are
randomly rotated about a preferred axis. This results in
cylindrical averaging of the intensities in Fourier space.
Owing to the symmetry of the reciprocal lattice L (u),
the observations are then of the form

Ij =
X
h2Sj

jF
h
j2; (3)

where Sj is the set of reciprocal lattice points of the
same cylindrical polar radius.

An important and practical problem that occurs in
fiber diffraction (XFD) involves completing the image
function � (x), from the intensity data, and a partial im-
age �P (x). This occurs in structural biology where the
3-D structure (image) may consist of known (located in
3-D) components and other unknown components (such
as other molecules, ions or solvent molecules) that need
to be located [1].



Labeling the missing contribution to the image as
�Q (x), we have

� (x) = �P (x) + �Q (x); (4)

so that

F
h
= FP

h
+ FQ

h
; (5)

and the problem reduces to one of estimating �Q (x),
or equivalently FQ

h
, from Ij and FP

h
.

2. STATISTICAL ESTIMATION

We adopt the following notation. Each observation Ij
represents information from nj = 2jSj j components,
the real and imaginary parts of each contributing F

h
;

h 2 Sj . Denoting these nj components as vectors, de-
fined as

Y =

2
6664

Ah1

Bh1
...

Bhn=2

3
7775 ;X =

2
66664

AQ
h1

BQ
h1
...

BQ
hn=2

3
77775 ;� =

2
6664

AP
h1

BP
h1
...

BP
hn=2

3
7775 ;

(6)

so that for each j, Y = X +� (j is suppressed), and
Ij = kYk2.

We apply a prior model to obtain the density func-
tion for the Xi based on the fact that the structure con-
sists of atoms, i. e. sharp separated peaks of electron
density. The image is therefore considered to be com-
posed of impulses, belonging to sets denoted by N;P
and Q for the complete, known and missing parts, re-
spectively. The number of impulses in each of these
sets are jNj; jPj and jQj. Taking the members of the
set Q to be independent and uniformly distributed in
the unit cell, the components ofX are independent and
identically distributed, N(0;�Q=2), where N(a; b) is
a normal pdf with mean a and variance b, and � is de-
terministic (known). Applying Bayes’ rule, we obtain
the conditional density, PXjIj (�), the posterior density
for the missing structure given the observations, as

PXjIj (x) = (��Q)
nj=2 (7)

exp(�kXk2=�Q) �(Ij � kx+�k2):

We use this conditional density to estimate FQ
h

. In cur-
rent XFD analysis, heuristic estimates are used to esti-
mate the Fourier coefficients and hence the missing im-
age. We use the posterior to obtain the minimum mean
square error estimate, and have also shown the current
heuristic’s to correspond to certain MAP estimates [2].

The minimum mean square error (MMSE) estimate
is the conditional mean of the posterior density, i. e.

X̂
MMSE =

Z
x

xPXjIj (x) dx; (8)

which can be evaluated to give [2]

F̂Q
h

MMSE =

 
Inj=2(�)

Inj=2�1(�)

s
Ij

IPj
� 1

!
FP
h
; (9)

8h 2 Sj , where I�(�) is the modified Bessel function
of the first kind of order � and � = 2(IjI

P
j )

1=2=�Q.
The maximum a posteriori (MAP) estimate given

by

X̂
MAP1 = argmax

x
PXjIj (x); (10)

can be evaluated to gives the Fourier coefficients [2]

F̂Q
h

MAP1 =

 s
Ij

IPj
� 1

!
FP
h
: (11)

The complex Fourier coefficients FP
h

may be ex-
pressed in modulus - phase angle form as jFP

h
j exp(i�P

h
).

Using only the information from the phase angle (to re-
duce the bias towards �P (x), we may obtain another
MAP estimate given by

X̂
MAP2 = argmax

x
P
XjIj ;f�Ph jh2Sjg

(x); (12)

which give the Fourier coefficients [2]

F̂Q
h

MAP2 =

 s
Ij
nj

� 1

!
FP
h : (13)

The MAP1 and MAP2 estimates correspond to current
practice in XFD analysis [1].

3. THEORY OF BIAS EFFECTS

An estimate Ĝ of a random variable G is said to be bi-
ased when the expected values (h�i denotes expectation)
differ, i. e.

hĜi 6= hGi: (14)



When the bias in the estimation is towards some known
parameter, say T , the estimate Ĝ, may be broken down
into components that are parallel and orthogonal to T ,
so that the orthogonal component which will be less bi-
ased may be used.

The bias in the estimation of the Fourier coefficients
arise because the posterior density function is centered
about �. While the MMSE estimates are unbiased in
general, the same cannot be said of the MAP estimates
for which hF̂Q

h
i 6= hFQ

h
i. We may “unbias” these esti-

mates by removing the component of �̂Q (x) that is cor-
related with �P (x). This “decorrelated” estimate is a
better estimate of the missing part of the structure, and
is calculated as

�̂U (x) = �̂Q (x)�B0�P (x); (15)

where B0 = B[(
R
�̂Q (x)

2
dx)]1=2 , and B is the bias

coefficient defined in the next section.

4. SIMULATIONS

In order to obtain performance metrics on the estimates,
simulations were performed on random sets of 2-D im-
ages. The images consist of uniformly distributed unit
impulses. The fraction of the image that is missing is
quantified using �Q = jQj=jNj. Fourier amplitudes
were randomly combined into an equal number of sets
Sj , such that 1 � jSj j � Smax to obtain the data Ij .
The data loss is quantified as Smax. The quality of the
reconstruction for the different estimates was measured
using the correlation coefficient of the estimated image
�̂Q (x) with �Q (x), i. e.

C =

R
�̂Q (x)�Q (x)dx

[(
R
�Q (x)2dx)(

R
�̂Q (x)2dx)]1=2

: (16)

Since the partial structure information forms a bias for
estimating the missing density, the estimates �̂Q (x) tend
to be correlated with the known partial structure �P (x).
The bias is quantified using

B =

R
�̂Q (x)�P (x)dx

[(
R
�P (x)2dx)(

R
�̂Q (x)2dx)]1=2

: (17)

5. RESULTS AND DISCUSSION

32�32 pixel images were used in the simulations. We
chose jNj = 50 and jQj 2 f5; 10g so that �Qwas 0.10

Figure 1: Test images used for the simulations. Left to
Right: � (x); �P (x) and �Q (x) for �Q = 0:1.

and 0.20. These are shown in (Fig. 1). For each set
Smax was varied from 1 to 5, and the MMSE, MAP1
and MAP2 estimates of �̂Q (x) were computed. The
correlation and bias coefficients were then evaluated.
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Figure 2: Correlation in the MMSE (——) , MAP1 (– – –)
and MAP2 (-�-�-) estimates for �Q = 0:10 (upper curves)
and 0:20 (lower curves).

The correlation coefficients (Fig. 2) decrease with
both �Q and Smax.The MMSE estimates perform bet-
ter than MAP1 and MAP2, especially for large amounts
of missing image and data loss. Fig. 3 shows recon-
structed images for �Q = 0:1. While the MAP es-
timates compare well with the MMSE at low �Q and
Smax, the MMSE estimate is superior at higher values.

The bias towards �P (x) increases (Fig. 4) with in-
creasing Smax, and �Q in general. An exception is the
MAP2 estimate whose bias decreases with Smax. How-
ever, the low correlation coefficients for this estimate
indicates poor quality, and the absence of bias is of no
real consequence. The MMSE coefficients have an
Inj=2(�)=Inj=2�1(�) “weight” which reflects the un-
certainty associated with using the Fourier coefficients
of the known part to break down (or phase) the intensity
datum. This produces the least biased of the estimates.



Figure 3: Estimated images �̂Q (x) from the simulations
with �Q = 0:1. Left to Right: MMSE, MAP1 and MAP2
reconstructions, Top to Bottom: Smax = 1; 2; 3

The images are decorrelated in real space by remov-
ing the component that is parallel to the known image
using (15). The performance curves before and after
the decorrelation operation are shown for �Q = 0:4 in
Fig. 5. The MAP1 estimate shows some improvement,
while the MAP2 estimate shows marginal improvement.
The MMSE shows no improvement indicating its unbi-
ased nature and still possesses higher correlation with
the true image than do the decorrelated estimates. Im-
ages for the MAP1 estimate for �Q = 0:2 and Smax =
2, with and without decorrelation are shown in Fig. 6.
A minor improvement is seen in the decorrelated esti-
mate, mainly as reduced background noise.
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Figure 4: Bias in the MMSE (——) , MAP1 (– – –) and
MAP2 (-�-�-) estimates for �Q = 0:10 (lower curves) and
0:20 (upper curves).
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Figure 5: Correlation in the MMSE (——) , MAP1 (– – –)
and MAP2 (-�-�-) estimates for �Q = 0:40, before (lines)
and after (with circles) decorrelation.

Figure 6: True image (left) for �Q = 0:2 and Smax =

2, and MAP1 (center) and decorrelated MAP1 (right) esti-
mates.


