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 ABSTRACT

In this paper, a fast segmental clustering approach to
decision tree tying based acoustic modeling is proposed for
large vocabulary speech recognition. It is based on a two
level clustering scheme for robust decision tree state
clustering. This approach extends the conventional
segmental K-means approach to phonetic decision tree
state tying based acoustic modeling. It achieves high
recognition performances while reducing the model
training time from days to hours comparing to the
approaches based on Baum-Welch training. Experimental
results on standard Resource Management and Wall Street
Journal tasks are presented which demonstrate the
robustness and efficacy of this approach.

1. INTRODUCTION

One phenomenon in large vocabulary speech recognition is
the amount of training data. It introduces a wide range of
acoustic variations caused by different speakers and
various channel conditions. Decision tree state clustering
based acoustic modeling has become increasingly popular
for modeling speech spectra variations in large vocabulary
speech recognition using Hidden Markov Models (HMMs)
[1,2]. In this paper, we discuss methods for improving the
robustness and accuracy in decision tree clustering based
acoustic modeling, and a fast segmental clustering based
approach is described and compared with the standard
method. Although we will concentrate on the triphone
based acoustic modeling, the approach described in this
paper extends straightforwardly to systems using greater
degrees of context-dependencies.

In decision tree clustering based acoustic modeling, each
node of the decision tree is attached to a question regarding
the phonetic context of the triphone units. A set of states
can be recursively partitioned into subsets according to the
phonetic questions at each tree node when traversing the
tree from the root to its leaves. States reaching the same

leaf node on the decision tree are regarded as similar and
tied. Even in large vocabulary speech recognition, many
triphones have only a very few occurrences in the training
data, and there are not sufficient data for a robust
parameter estimation of these rarely seen triphones.
Moreover, it is typical that a significant number of
triphones are missing or unseen in the training data. This
problem becomes more acute when using cross-word
context dependencies, because nearly all possible context
combinations are needed during decoding. The missing
triphones have to be constructed by using acoustic similar
states. The advantage of using decision tree in acoustic
modeling is two folds. First, it can lead to compact, high
quality state clusters for robust estimation of mixture
Gaussian distributions. Secondly, it makes it possible to
synthesize unseen triphones by using the acoustic similar
states according to the phonetic decision tree.

The standard method [1,2] in decision tree tying based
acoustic modeling is based on a Baum-Welch sequential
alignment process to estimate parameters of the mixture
Gaussian distribution for each state cluster at the leaf node
of the decision tree. Although this process can be made
parallel on different processors, the data alignment used in
model building becomes inconsistent to the data alignment
of Viterbi decoding during recognition. In the standard
method, this mismatch in data alignment is further
compounded by the use of a crude single Gaussian
unclustered triphone system in Baum-Welch sequential
alignment during training. Another key issue related to
decision tree tying based acoustic modeling is the quality of
the state clusters for robust parameter estimation.
Construction of a globally optimal decision tree is a
computationally intractable problem. In practice, a single
Gaussian, unclustered triphone system is built first, and
training data are segmented into states corresponding to
this single Gaussian unclustered system. In order to make
use of rarely seen triphones, all seen triphone samples are
directly used in the standard method to construct the single
Gaussian unclustered triphone system. It is often that only
the mean vectors are estimated from data, whereas the



variance vectors are smoothed with the mono-phone
models. During the decision tree clustering process, each
node of the decision tree is represented by a single
Gaussian distribution. The likelihood of the decision tree
node on the training data can be derived from the
associated single Gaussian unclustered states without
touching the training data. In this approach, the estimation
error introduced to the single Gaussian unclustered states
will have a long term impact on the quality of the decision
tree based state clustering.

The segmental clustering based approach described in this
paper is based on an Viterbi alignment of training data and
is an extension of the conventional segmental K-means
approach to decision tree tying based acoustic modeling. It
utilizes a two level clustering scheme to improve the
robustness of the model estimation. The high recognition
performance can be achieved while reducing the model
training time from days to hours comparing to the standard
method.

2. A FAST SEGMENTAL CLUSTERING
APPROACH

Alignment of training speech data for untied states in
decision tree based acoustic modeling is a critical issue to
the quality of the decision tree state tying based acoustic
modeling. In our segmental clustering based approach, the
segmentation of the training data is separated from the
model parameter estimation process and high resolution
multi-mixture Gaussian models are used to provide high
quality data alignment in decision tree tying. The training
data are aligned through a Viterbi alignment process. The
segmentation is according to the best state sequence.
Unlike in the standard method, model refinement and
parameter estimation are based on a fixed decision tree
from the single Gaussian untied system, the decision tree in
our approach is part of the iterative training process. It is
updated and re-estimated in each iteration during the
training of the acoustic models. In each iteration, the
training data is re-segmented using the decision tree state
tied model generated from the previous iteration. The
convergence property of the segmental K-means approach
ensures that training data alignment will improve and
converge with this iteration process. The high quality
training data alignment will lead to more precise estimate
of the likelihood variations during the decision tree
construction and improve the quality of the decision tree
state tying based acoustic modeling.

However, one of the issues in using Viterbi alignment in
decision tree state tying based acoustic modeling is how to

make robust use of these rarely seen triphone samples in
the training data. In Baum-Welch based parameter
estimation, all possible paths are considered, and it has a
much stronger smoothing effect on the parameters of these
rarely seen triphones with very few training samples. In
Viterbi alignment based segmental clustering approach,
only the best path is considered and parameters of these
rarely seen triphones can degenerate very quickly with the
decrease of the training samples. In order to make a full use
of the training data and improve the robustness of the
decision tree based state tying, a two level segmental
clustering scheme is used in our approach. The first level
segmental clustering is performed before forming the
single Gaussian untied system. It is to cluster those rarely
seen triphones into various generalized triphones according
to their phonetic similarities so that each of the clustered
generalized triphones has samples above the minimum
sample count threshold for forming single Gaussian states.
A single Gaussian untied system is built based on single
Gaussian triphones and generalized triphons from
clustering phonetically similar rare occurrence triphones.
The second level clustering is a decision tree based
clustering similar to the standard method. The phonetic
identity of each generalized triphone from the first level
clustering is defined to be the intersects of the phonetic
properties of all rare triphones in the cluster.

One way to group these rare triphones is by relaxing the
triphone context [3]. First the left contexts of the rare
triphones are skipped and we try to find enough right
context dependent bi-phones to build an acoustic model. If
there are not sufficient examples in the training data, we
skip the right context of the rare triphones and group the
tokens to left context dependent bi-phones. Still some very
rare context combinations do not have enough examples
and may be used to train back-off mono-phones. The two
level clustering approach described above takes the
advantage of generalized triphone at the stage of forming a
robust single Gaussian untied system to improve the quality
of the decision tree. The final model is still decision tree
tied in which the node splitting is determined solely by the
likelihood increase on the training data. In addition, the
unseen triphones are always synthesized according to the
decision tree without making reference to the generalized
triphones. This is very different from the generalized
triphone defined in [3] where state tying is determined
purely by the context.

In our current approach, for each state of each base phone
one decision tree is constructed to cluster all the context
dependent states of this phone. The tree uses questions
about the phonetic context to find the best set of tied states,
which maximize the likelihood of the training data and



have sufficient acoustic data associated. The splitting of
sets of states in the tree nodes is controlled by the increase
in likelihood for the associated phonetic questions and
terminated by a likelihood threshold and a minimum
occupation count. The leaves of the decision tree determine
the set of context specific states for each phone to be tied
together. The log likelihood for a set S of single mixture
states sharing one common Gaussian distribution with
mean ( )µ S  and covariance matrix ( )S∑ using the

segmental clustering based decision tree tying is given by
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where all frames xt with a state alignment s St ∈ are

considered and we assume the state alignment is not
changed by tying the states. For single Gaussian
distributions the log likelihood is
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where ( )n S is the number of frames assigned to S and D is

the dimensionality of the data vector. This log likelihood
can be calculated for every set of by using the already
available information from the segmental K-means
algorithm without additional accessing the training data. A
multi-mixture Gaussian distribution is estimated directly
for each tied state in our algorithm. This differs from the
Baum-Welch based approach, where multi-mixture
distributions are obtained by iterated binary splitting of
each Gaussian density function.

Our acoustic model training is based on the segmental K-
means algorithm and therefore the estimation of the model
parameters is independent for each state and can be
effectively  parallelized on multiple CPUs. Since all of the
time intensive calculations requiring the processing of
training data is distributed to multiple CPUs the required
time for one segmentation can be reduced drastically even
for large data sets.

3. EXPERIMENTAL RESULTS

The performance of the proposed segmental clustering
approach to phonetic decision tree tying based acoustic
modeling was evaluated on the Resource Management
(RM) and the Wall Street Journal (WSJ) tasks. For both
databases 12 mel-cepstral coefficients and the normalized
energy plus their 1st and 2nd order time derivatives were
used as acoustic features. The cepstral mean for each
sentence was calculated and removed. All phone models
have three emitting states and a left-to-right topology.

Training of the acoustic parameters was based on the
proposed segmental clustering decision tree tying
algorithm. First the parameters of all models with a number
of examples exceeding a threshold were estimated. We
used a minimum threshold of 10 examples in our
experiments. The rare triphones were grouped by skipping
first the left context and then the right context. The
phonetic decision tree tying was used to cluster equivalent
sets of context dependent states and to construct unseen
triphones. The final models were built by using the
segmental K-means algorithm to estimate the parameters
for the tied states. The number of mixtures for each tied
state varies from 4 to 12. All systems were gender-
independent and used cross-word triphone models.
Decoding was done using a one-pass N-gram decoder [5],
in which the search was conducted on a layered self-
adjusting decoding graph.

The standard SI-109 training data set was used in the RM
system. The CMU pronunciations and phone set (47
phones) were used to build the phonetic lexicon. Decoding
was based on the standard word-pair grammar. 3500
triphones occur at least 10 times in the training data, and
3000 triphones with a very low frequency count were
grouped to 630 triphone clusters. The total number of
Gaussian distributions was about 12000. The RM system
was tested on the official evaluation test sets (FEB89,
OCT89, FEB91, SEP92) using the 991 word vocabulary.
The word error rates (100% - word accuracy) for a system
with 1911 states and an average of 6.3 mixtures per state
are listed in Table 1 for different test sets.

FEB89 OCT89 FEB91 SEP92 FEB89-SEP92

2.4% 3.6% 2.3% 6.2% 3.6%

Table 1: Word error rates for the RM task.

The average word error rate of 3.6 % for the RM
evaluation tests is one of the best reported results for this
task and shows the high performance of the proposed
segmental clustering algorithm for acoustic training.

For the WSJ systems, the SI-84 and the SI-284 training
data sets were used. The lexicon was generated
automatically using a general English text-to-speech
system (41 phones) [6]. The language models used in the
experiments are the standard bigram and trigram language
models provided in the WSJ corpus. The SI-84 training
data (7200 sentences) contains about 8600 triphones with
more than 10 examples and about 8000 triphones with a
frequency count of less than 10. The SI-84 trained models



consist of 3447 tied states with a total of about 37000
Gaussian distributions. The average number of mixtures
per state is 10.9. The acoustic models for the WSJ systems
are all gender-independent. The evaluations of the WSJ
systems were performed on the official NOV92 (si_et_05,
si_et_20) and NOV93 (si_et_h1) test sets for the closed 5K
and open 20K vocabulary. The results are obtained based
on a one-pass frame synchronous decoding without
adaptation. The word error rates for the NOV92 evaluation
of the WSJ system trained on the SI-84 training data are
listed in Table 2.

Model NOV92

(SI-84) 5k-closed 20k-open

bigram 6.8 % 14.7 %

trigram 5.0 % 13.0 %

Table 2: Word error rates for NOV92 WSJ evaluation.

In the next experiment the full WSJ dataset (SI-284, 38700
sentences) was used in the training of the acoustic models.
About 10000 of the 24000 observed triphones occur less
than 10 times in the training data. These are grouped into
1029 triphone clusters to ensure the estimated parameters
for the state clustering are robust. After the phonetic
decision tree clustering 6804 tied states with about 87000
Gaussian distributions and an average of 12.8 mixtures per
state were calculated. The results for the NOV92 and
NOV93 tests are listed in Table 3.

Model NOV92 NOV93

(SI-284) 5k-closed 20k-open 20k-open

bigram 5.4 % 11.9 % 15.4 %

trigram 3.3 % 10.4 % 14.0 %

Table 3: Word error rates for NOV92 and NOV93
evaluation of the WSJ task .

The results of the gender independent system in the 5k
vocabulary NOV92 evaluation (column 1 in Table 2) are
very close to the best reported word error rates for gender-
dependent models [7]. The error rates for the 20k open
vocabulary evaluations are between 10.6 % for NOV92 and
14.1 % for the NOV93 H1-C1 test, while the 1.8 % out-of-
vocabulary  words make a significant contribution to the
word errors in this open vocabulary test.

Since the training of the acoustic models is based on the
segmental K-means algorithm most of the calculations
required can be performed in parallel on different CPUs or
computers. Even the phonetic tying for the individual
context dependent states can be separated in independent
processes. The required time for one training iteration,
including the segmentation of the acoustic data, on 6
Pentium-Pro processors for the RM task is about 1.5h and
for the WSJ SI-84 dataset less than 3h. This is a reduction
in training time from days to hours.

4. SUMMARY

In this paper, a fast segmental clustering approach to
decision tree tying based acoustic modeling is proposed for
large vocabulary speech recognition. It is based on a two
level clustering scheme for robust decision tree based state
clustering. This approach was tested on both RM and WSJ
tasks. The very low error rates were based on gender
independent models and obtained from an one pass
decoding without adaptation. These experiments illustrate
the robustness and efficacy of the proposed approach. In
addition, this algorithm is extremely efficient and the
model training time is reduced from days to hours, a much
desired feature for large vocabulary speech recognition.
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