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ABSTRACT

Presented in this paper are dynamic algorithm transfor-
mations (DAT) for systematic design of recon�gurable
computing engines. These techniques allow dynamic al-
teration of algorithm properties in response to input
non-stationarities. The input is modeled as a set of
states with an underlying probability distribution, PS.
For each input state s, a signal monitoring algorithm
SMA computes a power-optimal con�guration for the
signal processing algorithm SPA block. A fraction � of
the SPA block is hardwired and the remaining (1��) is
recon�gurable. Similarly, the SMA block computation
is partitioned into a fraction � for the memory and the
remaining (1��) for the datapath. For the given input
state distribution, the optimal values of � (�opt) and �
(�opt) are determined. It is shown that for frequency
selective �ltering, the power savings of 35%-45% can be
achieved by DAT-based recon�gurable system as com-
pared to the traditional design based on the worst-case
scenario.

1. INTRODUCTION

Algorithm transformation techniques [7] such as strength-
reduction [9], reduced complexity VQ [10], block pro-
cessing and associativity have been employed to design
low-power and high-throughput systems. These trans-
formations are referred to as static algorithm transfor-
mations (SAT), because these are applied during the
algorithm design phase assuming a worst-case scenario
and their implementation is time-invariant. Most real-
life signal environments are non-stationary and hence
signi�cant power savings can be expected if the algo-
rithm and architecture can be dynamically tailored to
the input. This is the basis for the recent interest in
adaptive computing systems (ACS) [1], where run-time
recon�gurability is a key feature. A related approach is
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that of data-driven signal processing [3], where the al-
gorithm workload and the voltage supply are varied in
real-time to optimize the power dissipation.

In [4], we proposed dynamic algorithm transforma-
tions (DAT) as another approach to data-driven recon-
�gurable signal processing [8]. The block level diagram
of the DAT-based system is shown in Fig. 1. The SPA
block (see Fig.1) implements the main signal process-
ing function, which could vary over time. On the other
hand, the SMA block decides the instant and the ex-
tent of modi�cation to the SPA block so as to optimize
the average energy dissipation while maintaining a pre-
speci�ed level of output performance.

In this paper, we de�ne input states and an underly-
ing probability distribution for these states. For each
of the states, the SMA block computes an optimum-
energy con�guration for the SPA block. The SPA
block (see Fig. 1) is partitioned into a hardwiredHSPA
and a recon�gurable RSPA block. The SMA block
(Fig. 1) is partitioned into datapath HSMA and mem-
ory MSMA blocks. Energy-optimum partitions are
then obtained by minimizing the total DAT energy dis-
sipation. This approach is applied to frequency selective
�lters to get signi�cant energy savings.

2. DYNAMIC ALGORITHM
TRANSFORMATIONS (DAT)

In this section, we present DAT as a systematic method
for designing a recon�gurable DSP system.

2.1. Probabilistic Setup

We present a probabilistic setup for design of DAT-
based recon�gurable systems.

De�nition 1 : The input state s at any instant nL,
s(nL) 2 S = fs1; s2; � � � ; sNs

g is an algorithm depen-
dent parameter de�ned for a block of L input samples
x(nL); x(nL� 1); � � � ; x(nL� L + 1).

The set S = fs1; s2; � � � ; sNs
g is usually prede�ned

and is algorithm dependent. For example, one de�ni-



tion of the input state s(nL) could be Esb;x(nL), where
Esb;x(nL) is the stopband energy computed via L input
samples x(nL); x(nL� 1); � � �; x(nL�L+1). The state
s can be detected after L sample periods from a block
of L input samples.

We assume that the input state s takes values from S
according to a probability mass function PS (s) de�ned
as

PS(si) = Probability(s = si); 1 � i � Ns (2:1)

where PS(si) � 0,
PNs

i PS(si) = 1 and Ns is the num-
ber of states.

De�nition 2 : The SPA con�guration C = [c1; � � � ; cN ]
is a vector of signals which recon�gure the SPA block
thus changing the algorithm being implemented.

For example, C = [h1; h2; � � � ; hN ] is a possible SPA
con�guration for an N -tap FIR �lter, where hi are B-bit
coe�cients of the FIR �lter.

De�nition 3 : The optimum SPA con�guration Copt(s)
is an SPA con�guration such that the SPA block dis-
sipates minimum energy while achieving speci�ed algo-
rithm performance for input state s.

After every L samples, the SMA block will be em-
ployed to computeCopt(s(nL)), where s(nL) can be any
of the Ns states de�ned by S. In the traditional static
framework, Ns = 1, s is the worst-case input state and
Copt(s) is the worst-case SPA con�guration.

De�nition 4 : The transition probability PT (si) for
state si is de�ned as

PT (si) = PS (s(nL) = si; s(nL� L) 6= si) : (2:2)

It can be seen that PT (si) is also the probability that re-
con�guration needs to take place. It can be shown that
for temporally uncorrelated s(nL), PT (si) increases with
PS(si).

2.2. Energy Dissipation

Let � be the fraction of SPA block which is hardwired,
and let � be the fraction of the SMA block in the form
of memory. Then, the average energy dissipation per
sample for a DAT-based system, EDAT (�; �) is given
by,

EDAT (�; �) = ESPA(�) + ESMA(�; �); (2:3)

where ESPA(�) and ESMA(�; �) is the average energy
dissipated per sample by the SPA and the SMA re-
spectively. The ESPA(�) can be further decomposed as:

ESPA(�) = EHSPA(�) +
NsX
i=1

ERSPA (Copt(si))PS(si);

(2:4)

where EHSPA(�) is the average energy dissipated per
sample by the hardwired HSPA block. ERSPA(C) is
the average energy dissipated per sample by the recon-
�gurable RSPA block in con�guration C.

Similarly, the energy dissipation of the SMA block
can be computed. Note that Copt(si) for si 2 S0 =
fs1; � � � ; s�Ns

g have been precomputed and stored in
memory MSMA, while Copt(si) for si 62 S0 are com-
puted online by employing HSMA block. The aver-
age energy dissipation per sample for the SMA block,
ESMA(�; �) is given by

ESMA(�; �) = EDSMA +
1

L

" X
si2S0

PT (si)EMSMA(�; �)

+
X
si 62S0

PT (si)EHSMA(�)

3
5 ; (2.5)

where EDSMA is the energy dissipated by the DSMA
block in detecting the input state, EMSMA(�; �) and
EHSMA(�) is the energy dissipated by MSMA and
HSMA block for each Copt computation,

P
si2S0 PT (si)

and
P
si 62S0 PT (si) is the probability thatMSMA and

HSMA block is used for Copt computation, L is the
number of samples after which the SPA block is recon-
�gured.

Substituting (2.4) and (2.5) in (2.3), we get the fol-
lowing optimization problem:

min EDAT (�; �) : s:t: 0 � �; � � 1: (2:6)

Next, we apply this framework to frequency selective
�lters.

3. APPLICATION TO FREQUENCY
SELECTIVE FIR FILTERING

For a given input signal x(n) having stopband energy
Esb;x dB, a �lter is to be designed such that the stop-
band energy in �lter output y(n) is less than Eo dB.
If Esb;x > Eo, we need a frequency selective �lter with
stopband attenuation given by A = (Esb;x � Eo) dB.
Hence, the input state is de�ned as s = Esb;x.
3.1. FIR Filter Design by Kaiser Window

We assume that an FIR �lter h(n) is to be designed
such that the stopband attenuation is more than A dB
and the transition bandwidth is less than �! radians.
A windowed version h(n) = w(n)hpr(n) of the ideal
prototype �lter hpr(n) can be employed. A near-optimal
window based on Bessel functions is given by Kaiser [5].
For this window, the tap length N [5] and the coe�cient
precision Bc [2] can be approximately obtained as

N =
A

2:285�!
; Bc =

A

6
+
1

2
log2

�
N

12�

�
; (3:1)



where � is a number much smaller than 1. For simplicity,
we can assume �0:5 log2(12�) in (3.1) to be an integer.
3.2. SPA Block and Hardware Models

The SPA block for FIR �lters is shown in Fig. 2. Let
Nmax be the total number of taps corresponding to the
worst-case input state. Assume that the HSPA block
has �Nmax taps, which will provide a certain minimum
level of stopband attenuation. The RSPA block will
have (1��)Nmax taps, which can be dynamically recon-
�gured to achieve stopband attenuation A(s) dependent
upon input state s = Esb;x.

Assuming array multipliers, we enforce the following
two recon�gurability modes for RSPA block:

1. Power-down : This is done by forcing the coe�-
cient hk to 0.

2. Variable-precision : This is achieved by shifting
coe�cients to the left such that the leading sign exten-
sion bits are removed. Thus the Bc � dlog2 jhkje rows
of the array multiplier are powered down. To get the
correct output, the product needs to be shifted back by
shk = Bc � dlog2 jhkje. Therefore, we employ barrel
shifters at the output of each multiplier in Fig. 2.

Thus the RSPA con�guration C is de�ned as,

C = [(h1; sh1); (h2; sh2); � � � ; (h(1��)Nmax
; sh(1��)Nmax

)];
(3:2)

where hk and shk are the inputs to the multiplier and
the shifter in kth tap of the RSPA block. The HSPA
block is optimized o�-line and is hardwired.
3.3. SMA Block

The DSMA block (Fig. 3) is employed to detect input
state s(nL) = Esb;x(nL) from a block ofL input samples
x(nL); x(nL� 1); � � � ; x(nL� L + 1) as follows [3],

Esb;x(n) = �
1

L

L�1X
i=0

[x2(nL � i) � y2(nL� i)]; (3:3)

where y(n) is the output of the �lter, and � is a con-
stant dependent upon the stopband attenuation of the
�lter. For each state s = Esb;x, the SMA block de-
termines minimum energy con�guration Copt(s) as de-
�ned in De�nition 3. The �Ns optimum con�gura-
tions Copt(s); s 2 S0 are precomputed and stored in the
MSMA block. The remaining (1��)Ns optimum con-
�gurations Copt(s); s 62 S0 are computed online by the
HSMA block.

4. EXAMPLES

In the context of frequency selective �ltering discussed
in last section, we assume Eo = �50 dB, �! = 0:1�.
Assume further that an 8�8 programmable coe�cient
multiplier accumulate (MAC) inRSPA block dissipates
0.25 nJ per sample and an 8�8 constant coe�cient and

optimized MAC in HSPA block is assumed to dissi-
pate 0.2 nJ per sample. We also assume that the en-
ergy dissipation per access of a Wmem �Bmem memory
(Wmem=number of words, Bmem=number of bits per
word) is given by [6],

Emem = �0 + �1Wmem + �2Bmem + �3WmemBmem;
(4:1)

where �i; i = 0; 1; 2; 3 are constants. Assuming 3.3V,
0.5� technology, we employ typical values of �0 = 0:125,
�1 = 0:004, �2 = 0:016, �3 = 0:000125 in nJ.
4.1. Input State Probability Function

We will assume that s = Esb;x has the following proba-
bility mass function:

PS(si) = � exp

"
�
1

2

�
si � �s
�s

�2
#
; i = 1; 2; � � � ; Ns;

(4:2)
where �s is stopband energy corresponding to the nom-
inal case and �2s indicates the spread of the stopband
energy around the nominal value. Note that �s can
be varied to generate di�erent input distributions. For
example, if �s ! 1, PS(s) reduces to uniform distri-
bution and all the states become equally-likely. Simi-
larly, if �s ! 0, PS(s) reduces to a single state distri-
bution with PS(s = �s) = 1. We assume Ns = 32,
si = �50i=Ns and L = 50. Therefore, the input signal
can have stopband energy Esb;x = s from �50 dB to 0
dB.
4.2. Optimum Energy Solution

By employing (4.2), (2.2), (2.4) and (2.5), we formulate
EDAT (�; �) de�ned in (2.3) for this application. We can
then solve energy optimization problem in (2.6). Here,
we vary the PS(s) in (4.2) by sweeping �s and study its
impact on the optimal solution.

Fig. 4 shows that EDAT;opt increases with �s. This is
because of the following two factors. First, as �s in-
creases, the distribution varies from the nominal state
to the uniform distribution thus increasing the probabil-
ity of the worst state and hence ESPA;opt. Second, with
increase in �s, the probability mass function gets dis-
tributed among more states thus increasing state tran-
sition probabilities and hence ESMA;opt.

Next, we investigate the energy savings Esav as com-
pared to the traditional hardwired design (� = 1) cor-
responding to the worst case. The energy dissipation
for this case is given by ESPA(� = 1). Fig. 5 shows that
35%-45% energy savings are achieved for given proba-
bility distributions.

As mentioned earlier, with increase in �s, the proba-
bility mass function gets distributed among more states
thus requiring higher recon�gurability (lower �). This
is consistent with the decreasing trend (with �s) of �opt



(� is the fraction of the SPA block hardwired) in Fig. 6.
Similarly, for higher �s (uniform distribution), �opt in-
creases (Fig.6) indicating that more con�gurations should
be stored in the memoryMSMA.
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