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ABSTRACT

Presented in this paper are dynamic algorithm transfor-
mations (DAT) for systematic design of reconfigurable
computing engines. These techniques allow dynamic al-
teration of algorithm properties in response to input
non-stationarities. The input 1s modeled as a set of
states with an underlying probability distribution, Pg.
For each input state s, a signal monitoring algorithm
SMA computes a power-optimal configuration for the
signal processing algorithm SPA block. A fraction «a of
the SPA block is hardwired and the remaining (1 —«) is
reconfigurable. Similarly, the SMA block computation
is partitioned into a fraction (3 for the memory and the
remaining (1 — /3) for the datapath. For the given input
state distribution, the optimal values of o (cvopt) and 3
(Bopt) are determined. It is shown that for frequency
selective filtering, the power savings of 35%-45% can be
achieved by DAT-based reconfigurable system as com-
pared to the traditional design based on the worst-case
scenario.

1. INTRODUCTION

Algorithm transformation techniques [7] such as strength-

reduction [9], reduced complexity VQ [10], block pro-
cessing and associativity have been employed to design
low-power and high-throughput systems. These trans-
formations are referred to as static algorithm transfor-
mations (SAT), because these are applied during the
algorithm design phase assuming a worst-case scenario
and their implementation is time-invariant. Most real-
life signal environments are non-stationary and hence
significant power savings can be expected if the algo-
rithm and architecture can be dynamically tailored to
the input. This is the basis for the recent interest in
adaptive computing systems (ACS) [1], where run-time
reconfigurability is a key feature. A related approach is
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that of data-driven signal processing [3], where the al-
gorithm workload and the voltage supply are varied in
real-time to optimize the power dissipation.

In [4], we proposed dynamic algorithm transforma-
tions (DAT) as another approach to data-driven recon-
figurable signal processing [8]. The block level diagram
of the DAT-based system is shown in Fig. 1. The SPA
block (see Fig.1) implements the main signal process-
ing function, which could vary over time. On the other
hand, the SMA block decides the instant and the ex-
tent of modification to the SPA block so as to optimize
the average energy dissipation while maintaining a pre-
specified level of output performance.

In this paper, we define input states and an underly-
ing probability distribution for these states. For each
of the states, the SMA block computes an optimum-
energy configuration for the SPA block. The SPA
block (see Fig. 1) is partitioned into a hardwired HSPA
and a reconfigurable RSPA block. The SMA block
(Fig. 1) is partitioned into datapath HSMA and mem-
ory MSMA blocks. Energy-optimum partitions are
then obtained by minimizing the total DAT energy dis-
sipation. This approach is applied to frequency selective
filters to get significant energy savings.

2. DYNAMIC ALGORITHM
TRANSFORMATIONS (DAT)

In this section, we present DAT as a systematic method
for designing a reconfigurable DSP system.

2.1. Probabilistic Setup

We present a probabilistic setup for design of DAT-
based reconfigurable systems.
Definition 1 : The input state s at any instant nL,
s(nL) € § = {s1,82,---,8N,} is an algorithm depen-
dent parameter defined for a block of L input samples
z(nL),z(nL —1),- - z(nL — L+1).

The set S = {sy,89,---,sy,} is usually predefined
and 1s algorithm dependent. For example, one defini-



tion of the input state s(nL) could be Eyp z(nL), where
Ep »(nL) is the stopband energy computed via L input
samples z(nL),z(nL —1), -, 2(nL — L+ 1). The state
s can be detected after I, sample periods from a block
of L input samples.

We assume that the input state s takes values from &
according to a probability mass function Pg(s) defined
as

Ps(si) = Probability(s =s;), 1<i< N, (2.1)
where Pg(s;) > 0, vas Ps(si) =1 and N is the num-
ber of states.

Definition 2 : The SPA configuration C = [¢1, - -, cn]
15 a vector of signals which reconfigure the SPA block
thus changing the algorithm being implemented.

For example, C = [hy, ha, -, hy] is a possible SPA

configuration for an N-tap FIR filter, where h; are B-bit
coefficients of the FIR filter.
Definition 3 : The optimum SPA configuration C,pi(s)
1s an SPA configuration such that the SPA block dis-
sipates minimum energy while achieving specified algo-
rithm performance for input state s.

After every L samples, the SMA block will be em-
ployed to compute C,,:(s(nL)), where s(nL) can be any
of the N, states defined by &. In the traditional static
framework, Ny = 1, s is the worst-case input state and
Copi(s) is the worst-case SPA configuration.
Definition 4 : The transition probability Pr(s;) for
state s; is defined as

Pr(s;) = Ps(s(nl) = s;,s(nL — L) #s;) . (2.2)
It can be seen that Pp(s;) is also the probability that re-
configuration needs to take place. It can be shown that
for temporally uncorrelated s(nL), Pr(s;) increases with
775(52').
2.2. Energy Dissipation
Let « be the fraction of SPA block which is hardwired,
and let 8 be the fraction of the SMA block in the form
of memory. Then, the average energy dissipation per
sample for a DAT-based system, Epar(a,3) is given
by,

Epar(a, B) = Espale) + Esprale, ), (2.3)

where Espa(a) and Espraler, §) is the average energy
dissipated per sample by the SPA and the SMA re-
spectively. The Egpa(r) can be further decomposed as:

Espala) = Exspala)+ Z Erspa (Cope(si)) Ps(si),
= (2.4)

where Epgpa(a) is the average energy dissipated per
sample by the hardwired HSPA block. Ergspa(C) is
the average energy dissipated per sample by the recon-
figurable RSPA block in configuration C.

Similarly, the energy dissipation of the SMA block
can be computed. Note that Copi(s;) for s; € Sy =
{s1,---,sgn,} have been precomputed and stored in
memory MSMA , while C,pi(s;) for s; € Sy are com-
puted online by employing HSMA block. The aver-
age energy dissipation per sample for the SMA block,
Esmale, f) is given by

1
Esmale,B) = Epsma + 7 Z Pr(s;))Emsmale, f)
S, €Sy

+ Z Pr(s;))Emsmale) |,
S:€So

(2.5)

where Epgara 1s the energy dissipated by the DSMA
block in detecting the input state, Eyrsarale, 3) and
Emsmale) is the energy dissipated by MSMA and
HSMA block for each Cp; computation, ZS,ESD Pr(s;)
and ZS,QSD Pr(s;) is the probability that MSMA and
HSMA block is used for C,p; computation, L is the
number of samples after which the SPA block is recon-
figured.

Substituting (2.4) and (2.5) in (2.3), we get the fol-

lowing optimization problem:

min Epar(a,f) : st.0< o, < 1. (2.6)

Next, we apply this framework to frequency selective
filters.

3. APPLICATION TO FREQUENCY
SELECTIVE FIR FILTERING

For a given input signal #(n) having stopband energy
Fp» dB, a filter is to be designed such that the stop-
band energy in filter output y(n) is less than £, dB.
If By > E,, we need a frequency selective filter with
stopband attenuation given by A = (Es . — E,) dB.
Hence, the input state is defined as s = Ep .

3.1. FIR Filter Design by Kaiser Window

We assume that an FIR filter h(n) is to be designed
such that the stopband attenuation 1s more than A dB
and the transition bandwidth is less than Aw radians.
A windowed version h(n) = w(n)hy.(n) of the ideal
prototype filter hp,(n) can be employed. A near-optimal
window based on Bessel functions is given by Kaiser [5].
For this window, the tap length N [5] and the coefficient
precision B, [2] can be approximately obtained as

A A 1 N
N=— " B =24 log (), (31
2.285Aw R (126) (3:1)



where € 1s a number much smaller than 1. For simplicity,
we can assume —0.5log,(12¢) in (3.1) to be an integer.
3.2. SPA Block and Hardware Models

The SPA block for FIR filters is shown in Fig. 2. Let
Npaz be the total number of taps corresponding to the
worst-case input state. Assume that the HSPA block
has aNy,qe taps, which will provide a certain minimum
level of stopband attenuation. The RSPA block will
have (1—&) Ny, qp taps, which can be dynamically recon-
figured to achieve stopband attenuation A(s) dependent
upon input state s = g ;.

Assuming array multipliers, we enforce the following
two reconfigurability modes for RSPA block:

1. Power-down : This is done by forcing the coeffi-
clent hy to 0.

2. Variable-precision : This is achieved by shifting
coefficients to the left such that the leading sign exten-
sion bits are removed. Thus the B, — [log, |Ag|] rows
of the array multiplier are powered down. To get the
correct output, the product needs to be shifted back by
shy = B. — [logy |ht|]. Therefore, we employ barrel
shifters at the output of each multiplier in Fig. 2.

Thus the RSPA configuration C is defined as,

C = [(h1, sh1), (ha, sha), - -, (h(l_a)Nmaz’ Sh(l—a)Nmaz ]
(3.2)

where h; and shp are the inputs to the multiplier and

the shifter in &* tap of the RSPA block. The HSPA

block is optimized off-line and 1s hardwired.

3.3. SMA Block

The DSMA block (Fig. 3) is employed to detect input

state s(nL) = Eyp »(nL) from a block of L input samples
z(nL),z(nL —1),---,2(nL — L + 1) as follows [3],

1L—l

= pp D _[P(nl = i) = y*(n = )],

i=0

Esbyx(n) (33)

where y(n) is the output of the filter, and p is a con-
stant dependent upon the stopband attenuation of the
filter. For each state s = F,;,, the SMA block de-
termines minimum energy configuration C,p:(s) as de-
fined in Definition 3. The BN optimum configura-
tions C,pi(s),s € Sy are precomputed and stored in the
MSMA block. The remaining (1 — 3)N; optimum con-
figurations Cop(s),s € Sy are computed online by the
HSMA block.

4. EXAMPLES

In the context of frequency selective filtering discussed
in last section, we assume £, = —50 dB, Aw = 0.17.
Assume further that an 8x8 programmable coefficient
multiplier accumulate (MAC) in RSPA block dissipates
0.25 nJ per sample and an 8x8 constant coefficient and

optimized MAC in HSPA block i1s assumed to dissi-
pate 0.2 nJ per sample. We also assume that the en-
ergy dissipation per access of a Wyem X Bem memory
(Wmem=number of words, Bpem=number of bits per
word) is given by [6],

gmem = Xo + XIWmem + XZBmem + XBWmemBmema
(4.1)
where x;,¢ = 0,1,2,3 are constants. Assuming 3.3V,
0.5 technology, we employ typical values of xo = 0.125,
x1 = 0.004, x2 = 0.016, x3 = 0.000125 in nJ.
4.1. Input State Probability Function

We will assume that s = F; , has the following proba-
bility mass function:

2
Pg(si):ﬁexp [—% (52;/15) ], i:l,?,...
(4.2)

where i, is stopband energy corresponding to the nom-
inal case and ¢? indicates the spread of the stopband
energy around the nominal value. Note that o; can
be varied to generate different input distributions. For
example, if o, — 00, Ps(s) reduces to uniform distri-
bution and all the states become equally-likely. Simi-
larly, if o5 — 0, Pg(s) reduces to a single state distri-
bution with Pg(s = ps) = 1. We assume N; = 32,
s; = —50i/N; and L = 50. Therefore, the input signal
can have stopband energy F,; ., = s from —50 dB to 0
dB.

4.2. Optimum Energy Solution

By employing (4.2), (2.2), (2.4) and (2.5), we formulate
Epar(a, B) defined in (2.3) for this application. We can
then solve energy optimization problem in (2.6). Here,
we vary the Pg(s) in (4.2) by sweeping o; and study its
impact on the optimal solution.

y Ngs

Fig. 4 shows that Ep a7 ops increases with o,. This is
because of the following two factors. First, as o5 in-
creases, the distribution varies from the nominal state
to the uniform distribution thus increasing the probabil-
ity of the worst state and hence Espa ops. Second, with
increase in oy, the probability mass function gets dis-
tributed among more states thus increasing state tran-
sition probabilities and hence Esara, ope-

Next, we investigate the energy savings &4, as com-
pared to the traditional hardwired design (o = 1) cor-
responding to the worst case. The energy dissipation
for this case is given by Espa(a = 1). Fig. 5 shows that
35%-45% energy savings are achieved for given proba-
bility distributions.

As mentioned earlier, with increase in o, the proba-
bility mass function gets distributed among more states
thus requiring higher reconfigurability (lower «). This
is consistent with the decreasing trend (with o) of cvops



(o is the fraction of the SPA block hardwired) in Fig. 6.
Similarly, for higher o, (uniform distribution), B,p: in-

creases (Fig.6) indicating that more configurations should

be stored in the memory MSMA..
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