
Using Markov Decision Process for Learning Dialogue Strategies

Esther Levin, Roberto Pieraccini, Wieland Eckert

AT&T Labs-Research,
180 Park Avenue, Florham Park, NJ 07932-0971, USA

(esther | roberto | eckert)@research.att.com

 Abstract - In this paper we introduce a stochastic model for
dialogue systems based on Markov decision process. Within
this framework we show that the problem of dialogue
strategy design can be stated as an optimization problem, and
solved by a variety of methods, including the reinforcement
learning approach. The advantages of this new paradigm
include objective evaluation of dialogue systems and their
automatic design and adaptation. We show some preliminary
results on learning a dialogue strategy for an Air Travel
Information System.

1. INTRODUCTION

Recent progress in the field of spoken natural language
understanding [1] expanded the scope of spoken language
systems to include mixed initiative [1-5, 7]. Currently there are
no agreed upon theoretical foundations for the design of such
systems. Looking at the history of speech recognition research
and the tremendous progress due to the introduction of a
computational model such as HMM, we believe that dialogue
research could greatly benefit from a principled theoretical and
computational description of the problem.
In this work we define a dialogue system as a system that tries to
achieve an application goal in an efficient way through a series
of interactions with the user. We show that by quantifying the
terms efficiency and achievement of application goal in terms of
an objective function, the dialogue system can be described as a
known stochastic model - Markov Decision Process (MDP) - that
can be used for learning the dialogue strategy for a given
application.
The advantages of this new paradigm include objective
evaluation of dialogue systems and their automatic design and
adaptation.
We show some preliminary results on learning a dialogue
strategy for an Air Travel Information System.

2. DIALOGUE SYSTEM AS A MARKOV DECISION
PROCESS

In this section we will give a formal definition of a dialogue
system. For clarity, we will illustrate it with a very simple tutorial
example of Day-and-Month Dialogue, where the goal of the
system is to get the correct day and month values from the user
through the shortest possible interaction.

We formalize a dialogue system by describing it in terms of a
state space, an action set, and a strategy.

The state of a dialogue system represents all the knowledge the
system has about internal and external resources it interacts with
(e.g. remote databases or machinery, user input, etc.). For our
simple tutorial example, the state of the system includes only two
entries: the day and the month, whose values can be either empty,
or filled through interaction with the user. The total number of
states is 411, including one empty initial state, 12 states for
which the month is filled and the day isn’t, 31 states in which the
day is filled, but not the month, 366 states with complete dates,
and a special final empty state.
The action set of the dialogue system includes all possible
actions it can perform, such as interactions with the user (e.g.
asking the user for input, providing a user some output,
confirmations, etc.), interactions with other external resources
(e.g. querying a database), and internal processing.
For our example, the action set include only four actions:
1. A question to the user asking for the value of the day.
2. A question to the user asking for the value of the month.
3. A more open-ended question asking for the value of the date

(day and month).
4. A final action, closing the dialogue and submitting the form.
In actions 1, 2 and 3, the system asks the appropriate question,
and activates a speech recognition system to obtain the user’s
answer.
When an action a is taken at state s, the system’s state changes to
be s’. For the day-and-month example, when the system is in an
initial state and it asks the user for the month, the next state
depends on the actual answer of the user as well as on the speech
recognition performance, and it can be any one among the 12
states in which the month is filled, but the day is not. The state
transitions are modeled by transition probabilities PT(s(t+1) = s’
| s(t) = s, a(t) = a).
A dialogue session corresponds to a path in the state space
starting at the initial state and ending at a final state.
A dialogue strategy specifies, for each state reached, what is the
next action to be invoked.

The next definition concerns with the main assumption of our
model.
We assume that the goal of a dialogue system is to achieve an
application goal in an efficient way through a series of
interactions with the user.
Any dialogue system has an application goal: whether it is
filling a form by obtaining information from a user (like in our
tutorial example), or information retrieval, where the system is
trying to provide some useful information to the user (like in the
Air Travel example below). The efficiency, depending on
application, represents dialogue duration, cost of internal

∑= ,iCC

processing, cost of accessing external databases or other
resources, etc.
We further assume that for each application we can measure the
system performance by an objective function C,
(1)

where the costs Ci measure the distance to the achievement of the
application goal, the efficiency and the intelligence of the
interactions. Therefore, the goal of dialogue system design is to
build a system with a strategy that minimizes this objective
function. It has been shown in [9] that also an abstract cost
reflecting user satisfaction with the system can be measured
experimentally and modeled as a linear combination of costs as
in equation (1). In a real system, the user satisfaction cost can
constitute one of the terms in (1). For our tutorial example, where
the goal of the system is to obtain the correct day and month
values through the shortest possible interactions, the objective
function includes three terms:

(2) C = Wi * <# interactions> + We * <# errors> + Wf * <#
incomplete values>.

The first term is the expected duration of the dialogue; the second
corresponds to the expected number of errors in the obtained
values (ranging from 0 to 2); and the third measures the expected
distance from achieving our application goal (this distance is 0
for a complete date, 1 if either day or month value is missing, and
2 if both are incomplete).

In order to reflect this objective function in our dialogue model,
we associate a cost c to the action a taken in a state s. The cost
incurred with any of the first three actions in day-and–month
dialogue system is Wi + We * number of errors. If we assume
that the concept error rate for recognition of month or day values
separately (for questions 1 and 2) is p1, and together (for
question 3) is p2, p2 > p1, then the expected cost accumulated
when actions 1 or 2 are taken is Wi +We*p1, while for question 3
is Wi +2*We*p2. For action 4 (closing the dialogue and
submitting the obtained date) the cost depends deterministically
on the state in which this action is taken and is
Wi + 2Wf for an initial state, Wi + Wf for states in which either
the day value or month value is unfilled, and Wi for the states in
which both values are filled in.
In general, the costs in MDP are described by the conditional
distributions
PC(c(t) = c | s(t) = s, a(t) = a).
If we define the session cost as a sum of all the costs experienced
by the system during a dialogue session (a path in the state space
starting in initial state, and ending in finite state), then the
objective function (1) corresponds to the expected dialogue
session cost.
This quadruple of state space, action set, transition probabilities,
and cost distributions defines a Markov decision process.

Of course, different strategies for the same system result in
different expected session costs. Figure 1 shows three different
strategies and their costs for the day-and-month system. We
define an optimal strategy as the one that minimizes the expected
cost. For example, in figure 4, strategy 1 (where the system does
not even engage in dialogue, closing the dialogue as the first

action) is optimal when the recognition error rate is too high: p1
> (Wf –Wi)/We.
In strategy 2, the system opens the dialogue by asking the open
ended question number 3, fills out the day and the month slots
with the values recognized from the user response, and closes the
session. In strategy 3, the system first fills up the day and then
the month by engaging in actions 1 and 2, and then closes the
session. Strategy 3 is optimal when the difference in error rates
justifies a longer interaction: p2 –p1 > Wi / 2We.

Stating the problem of man-machine dialogue design as an
optimization problem provides the following potential
advantages:

Objective evaluation: It is possible now to grade different
strategies for the same system just by comparing their expected
cost. It is also possible to compare different systems that share
the same objective function.
Automatic design: Since the problem of strategy design is cast
as optimization problem, it is possible to devise methods for
performing this optimization automatically.
Such automatic design procedure for finding the optimal strategy
is the subject of the reinforcement learning discipline. For a
tutorial on reinforcement learning look at [6]. In the next section
we describe an ATIS based dialogue system for which the
optimal strategy was learned using RL.

3. USING RL FOR LEARNING THE OPTIMAL
STRATEGY FOR THE ATIS DOMAIN .

We used a Monte Carlo style reinforcement learning algorithm to
learn the optimal strategy for a dialogue system based on the
ATIS task. The possible actions of the system in this case
include: greeting the user with an open ended question (i.e. How
can I help you?); asking the user to provide information about a
specific attribute of the task (e.g. origin, airline, departure time,
etc.); retrieving data from the database according to the current
user request (this action does not involve interaction with the
user; output the retrieved data to the user; asking the user to
release a constrain; and closing the dialogue.
We chose a very simple state description in order to simplify the
learning. The state included three templates (a template is a set of

�
�

�
�

'D\
0RQWK

:KLFK GDWH " *RRG %\H.

&� �:, � �3�:(

�
�

'D\
0RQWK

'D\
�

:KLFK GD\ " :KLFK PRQWK"

�

�

*RRG %\H.

&� �:, � �3�:(

*RRG %\H.
�

�

-
-

&� �:, � �:)

6WUDWHJ\ ��

6WUDWHJ\ ��

6WUDWHJ\ ��

Figure 1: Different Strategies in the tutorial example

keyword-value pairs that we used in our ATIS understanding
system [3] as a meaning representation). The user template
represents the meaning of user request interpreted in context; the
data template includes the number of data tuples retrieved from
the database according to the query based on user template; and
the system template includes a keyword OUTPUT only if the
action output was used in the past and data was output to the
user.
The objective function for this application has four terms:
(3) C = W1*C1 + W2*C2 + W3*C3 + W4*C4,
where C1 is the expected number of interactions in a dialogue;
C2 - the expected cost of data retrieval - is linear with the
number of tuples retrieved; C3 - the expected cost of data
presentation - zero for a reasonable number of tuples (very few,
if the system has to verbalize the data, more if it can use a
display), and rapidly increasing with the number of tuples
thereafter; and C4 is the expected distance from the application
goal (output data to the user) that penalizes with a fixed cost
dialogues that fail to provide flight information to the user.
The system started with no knowledge of the task, i.e., each
action had the same probability of being selected by the system at
any step. A typical dialogue with an untrained system will look
like the following:

Of course the total cost for this dialogue is quite high, especially
due to the high cost of retrieval (all the database was retrieved
here) and data output (12000 flights).

After training, the system learned the following optimal strategy
(Figure 2): start the dialogue by greeting (the probability of
getting more information from the user is higher with greeting
rather than a specific question), ask constraining questions until
the origin, destination, and airline are specified, and retrieve data
from the database. After the retrieval, if the resulting data set is
empty (because the query was over-constrained), release the
airline constraint and retrieve again. If there are too many flights
in the data set, ask to constrain the departure time and retrieve
again. If at any point during the dialogue the retrieved data set
has a reasonable number of flights, the data is output and the
dialogue is closed.
An example of dialogue performed with a trained system is as
follows:

Rather than conducting thousands of dialogues with the system in
order to train it, we used a user model that is described in [8].
The user model is a stochastic dialogue system that generates a
reasonable user response to system actions. Different parameters
of the user model will result in different learned strategies. The
strategy described above was obtained by interactions with a user
model that has a very high degree of compliance (i.e. very high
probability of producing proper answers to system's questions).
While learning and before reaching the optimal strategy
described above, the system went through the four strategies
schematically shown in Figure 3.

Strategy number 1 was learned after only a few (20) dialogues.
In this strategy, the system immediately closes the dialogue, and
its cost is quite high due to the user dissatisfaction cost, but it is
much lower than the cost of a random strategy as shown in the
first dialogue above. After some more (12000) dialogues the
system learns strategy number 2: it opens the dialogue by
greeting the user with “How may I help you?”; retrieves data
from a database according to the user’s request; outputs the data
to the user, and closes the dialogue. This strategy corresponds to
user-initiated dialogue, as in original ATIS task [1].
The third strategy is learned after 90,000 dialogues. In this
strategy the system learned that if there is too much data
retrieved, it should ask the user constraining questions about
airline and departure time. It takes 700,000 dialogues to learn
strategy number 4. Here the system learns to release constrains

S: GREETING This is the AT&T flight
information. How may I help you?

U: I want to go to Boston.
S: CONSTRAIN
ORIGIN

Where do you want to leave from?

U: San Francisco
S: CONSTRAIN
AIRLINE

Which airline?

U: Delta
S: RETRIEVAL (30
flights)
S: CONSTRAIN
DEPART. TIME

When do you want to leave?

U: In the late afternoon.
S: RETRIEVAL (3
flights)
S: OUTPUT DATA Flight … leaves at …, flight …

leaves at …
U: Thanks.
S: CLOSE DIALOGUE Thank you for using AT&T.

S: RELEASE AIRLINE Do you want to choose another
airline?

U: What?
S: RETRIEVAL

S: CONSTRAIN
DEPART. TIME

When do you want to leave?

U: UH? I want to go to Boston
S: OUTPUT DATA There are 12,000 flights…
U: I don’t understand, can you please

show me the flights from San
Francisco to Boston?

S: CLOSE DIALOGUE Thank you for using AT&T.

*UHHWLQJ 5HWULHYDO

&RQVWUDLQ

5HOHDVH

2XWSXW&ORVLQJ

HQRXJK
FRQVWUDLQWV

WRR PXFK

GDWD

QR GDWD

&RQVWUDLQ

&RVW� ����

Figure2: The optimal strategy

(departure time, airline) if the retrieval resulted in an empty data
set. The optimal strategy of Figure 2 is learned after 710,000
dialogues. The last thing the system learns is to gather enough
information from the user before the data retrieval. The rate of
convergence, the number of dialogues needed for the system to
learn, and the actual sequence of strategies the system goes
through depend on the flavor and the parameters of the learning
algorithm used.

4. Summary

In this paper we propose a formal quantitative model for man-
machine dialogue systems. First, we introduce a general
formalization of such systems in terms of their state space, action
set and strategy. With this formalization we can describe any
dialogue system without loss of generality, but it does not
provide a quantitative analysis of dialogue system qualities.
Then, we proceed with the main assumption that a good strategy
for a dialogue system is minimizing an objective function that
reflects the costs of all the important dialogue dimensions. With
this assumption we can model any man-machine dialogue system
using a Markov decision process, a stochastic model commonly
used today for control, games, and other applications, and use

reinforcement learning algorithms for designing the optimal
strategy automatically. We used reinforcement learning
algorithm to learn an optimal strategy for an air travel based
dialogue system, and showed that a system that started without
any initial knowledge converged to a very reasonable strategy.
This paradigm also allows us to objectively evaluate and
compare different strategies and different systems for the same
application.

References

[1] Proc. of 1995 ARPA Spoken Language Systems Technology
Workshop , Austin Texas, Jan. 1995.
[2] Glass, J. et al., “The MIT Atis System: December 1994
Progress Report”, Proc. of 1995 ARPA Spoken Language Systems
Technology Workshop, Austin Texas, Jan. 1995.
[3] Levin, E., Pieraccini, R., Di Carlo, A., “User Initiated Mixed
Initiative Dialogue for Database Information Retrieval,” to
appear in LuperFoy, S. (editor) Automated Spoken Dialogue
Systems, MIT Press.
[4] Sadek, M.D., Bretier, P., Cadoret, V., Cozannet, A., Dupont,
P., Ferrieux, A., & Panaget, F., “A Cooperative Spoken Dialogue
System Based on a Rational Agent Model: A First
Implementation on the AGS Application,” Proceedings of the
ESCA/ETR Workshop on Spoken Dialogue Systems, Hanstholm,
Denmark, 1995.
[5] Stallard, D., “The BBN ATIS4 Dialogue System,” Proc. of
1995 ARPA Spoken Language Systems Technology Workshop,
Austin Texas, Jan. 1995.
[6]Kaelbling, L. P., Littman, M. L., Moore, A. W.,
“Reinforcement Learning: A Survey,” in Journal of Artificial
Intelligence Research, No. 4, pp. 237-285, May 1996.
[7]Marcus, S. M., Brown, D. W., Goldberg, R. G., Schoeffler, M.
S., Wetzel, W. R., and Rosinski, R. R. “Prompt Constrained
Natural Language - Evolving the Next Generation of Telephony
Services,” Proc. of ICSLP '96, Philadephia (PA), October 1996.
[8] Eckert, W., Levin, E., Pieraccini, R., “User Modeling for
Spoken Dialogue Systems,” in Proc. IEEE ASR Workshop, Santa
Barbara, 1997.
[9] Walker, M. A., Littman, D. J., Kamm, C. A., Abella, A.,
“PARADISE: A Framework for Evaluation of Spoken Dialogue
Agents,” in Proc. 35-th Annual Meeting of the Association for
Computational Linguistics, Madrid, Spain, 1997.

5HWULHYDO

*UHHWLQJ 5HWULHYDO 2XWSXW &ORVLQJ

&ORVLQJ

*UHHWLQJ 2XWSXW &ORVLQJ

&RQVWUDLQ

WRR PXFK GDWD

*UHHWLQJ 5HWULHYDO 2XWSXW &ORVLQJ

&RQVWUDLQ 5HOHDVH

QR GDWD

Cost1 = 1405

Cost2 = 469.24

Cost3 = 231.95

Cost4 = 123.93WRR PXFK GDWD

1

2

3

4

Figure3: Incremental learning of optimal strategy.

