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ABSTRACT

In this paper, we propose a deconvolution method based on
discrete-time optimal control. By combining Kalman fil-
tering with optimal control, we state the problem in terms
of tracking problem. This leads to solve a set of recurrent
equations, including in particular a matrix Riccati equation.
We present a method that transforms the solution of these
recurrent equations in that of a linear system of equations.
Once the linear system has been set up, the deconvolution
procedure becomes very fast, and permits on-line deconvo-
lution. It is also possible to use the discrete impulsional
response, and perform blind deconvolution. This technique
include aL2 or H1 optimal filter. Numerical examples il-
lustrate the robustness of the procedure.

1. INTRODUCTION

This paper presents a deconvolution method for discrete-
time linear system [4][5][6]. We propose to restore a dis-
torded signal when the recorded output signal is noisy. We
combineL2 or H1 filter with optimal control, in order to
achieve tracking control to the filtered output. Consider a
discrete-time linear system in which noises are added to the
input and output. The noised system model is given by a
state equation

xk+1 = Adxk +Bduk +Bdwk
ymk = Cdxk + vk

(1)
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When using a Kalman orH1 discrete filter [1][3][4] the
state and output estimation are given by

x̂k+1 = (Ad �KCd)x̂k +Bduk +Kymk
yek = Cdx̂k

(2)

The equation of the system model is

xk+1 = Adxk +Bduk
yk = Cdxk

(3)

then we form the augmented system

Xk+1 = AXk +B1uk +B2y
m
k

ek = CXk
(4)

where

Xk =

�
xk
x̂k

�
; A =

�
Ad 0
0 Ad �KCd

�
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Bd

Bd

�
; B2 =
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0
K

�
; C =

�
Cd �Cd

�

The purpose, is to determine the optimal inputu�k which
minimizes the following criterion

J =
N�1X
k=0

(e2k + �u2k) + e2N ; ek = yk � yek (5)

which can be expressed by

J =

N�1X
k=0

(XT
k QXk +�u2k) +XT

NQXN ; Q = CTC: (6)

This configuration is illustrated at Figure 1.
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uk : input signal.
ymk : recorded signal.
wk : gaussian noise added to the input.
vk : gaussian noise added to the output.

Fig 1 : Optimal deconvolution configuration.

2. SOLUTION OF THE PROBLEM

The solution is given by the following recurrent equations
[4]

u�k = �SBT
1 Hk+1AXk+S(AT

�ATHk+1B1SB
T
1 )
�1�k

where

S = (�+BT
1 Hk+1B1)

�1

Hk = ATHk+1A�ATHk+1B1SB
T
1 Hk+1A+Q
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1 )(�k+1 �Hk+1B2y

m
k )
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k

+BT
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Hk and�k must be solved backwards with the initial condi-
tionsHN = Q and�N = 0. It corresponds to the discrete
version of the optimal tracking problem applied in the con-
text of deconvolution as shown in Figure 1.

3. FAST DECONVOLUTION

The following method used anN -dimensional linear system
equations,N being the number of samples. As in the pre-
vious section this method is based on optimal control the-
ory. The solution of that linear system represents the decon-
volved input. The discrete state equation of the augmented
system (4), can be developed as follows

Xk = AkX0 +Ak�1B1u0 + � � �+B1uk�1
+Ak�1B2y0 + � � �+B2yk�1:

(7)

In this form the discrete state vector will only depend on
the initial stateX0 and the time stepk. Using the equation
(7), we replaceXk in the criterionJ . Now, the criterionJ
only depends on the initial stateX0 and the inputsuk k =
0; 1; � � � ; N � 1. The matrixQ is non-negative and� is

stricly positive. The criterionJ is quadratic. The condition
of optimality is

@J

@uk
= 0 ; k = 0; 1; � � � ; N � 1: (8)

This condition lead to aN -dimensional linear system in
which the unknowns are

uk ; k = 0; 1; � � � ; N � 1:

LetU = (u0 u1 � � � uN�1)
T be the unknown vector, and

Ym = (ym0 ym1 � � � ymN�1)
T the recorded vector. The linear

system to solve is

[�IN;N +�]U = ��Ym � � (9)

where
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and
Sn = Q+ATQA+ � � �+AnTQAn

IN;N is the identity matrix of dimensionN , andAnT de-
notes the transpose of the matrixAn.
The resolution of the linear system (9) gives the same solu-
tion as the one given in section 2.

Remarks

� The linear system (9) is nonsingular by construction
and by the assumption made over the matrixQ and
the parameter�.

� Once the linear system is built and stored in memory,
it is easy to make fast on-line deconvolution, i.e. to
treat fast sequences of output signals.

4. FAST DECONVOLUTION USING IMPULSE
RESPONSE

In practice it is not always possible to obtain the discrete
state equation of any process or sensor. It is easier to obtain
the discrete impulse response. We propose to use the dis-
crete impulse responsehi, in order to describe the system



by a state equation in which the order is equal to the num-
ber of samplesN . LetH = [h0 h1 � � � hN�1 hN ] be the
vector corresponding to the discrete impulsional response.
In that case, the state equation of the system is

xk+1 = Adxk +Bduk
yk = Cdxk +Dduk

(10)

where

Ad =

2
66666664

0 1 0 � � � 0
...

...
...

...
...

...
...

... 0
...

... 1
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3
77777775
; Bd =

2
6666664

0
...
...
0
1

3
7777775
;

Cd = [hN hN�1 � � � h2 h1] ; Dd = h0:

As in section 3, but by use of the discrete impulse response,
we can get a linear system of equations of dimensionN .
In this way, after putting in memory the matrix� ; � and
the vector�, it is possible to perform fast deconvolution. In-
cluding an optimal filter, the numerical resolution of a linear
system of dimensionN (N can be until 1000 samples) takes
just a second or a few.

5. MYOPIC DECONVOLUTION

The technique proposed in the previous section can be ap-
plyied to myopic deconvolution. The use of a pair of in-
put/output of the process, enables us to restore a degraded
input signal corresponding to a measured output signal. Thus,
one can say that the identification procedure is embedded
in the deconvolution procedure. As in some identification
method, one must take care to choose a pair of measured
signal that are rich enough in harmonic in order to guaran-
tee a realistic solution. The idea consists of a transformation
of the convolution relation [2].

y = h � u � y � u1 = y1 � u with y1 = h � u1:

Therefore, the impulse responseh is replaced by the couple
I/O (u1; y1). Then to achieve the deconvolution, one just
have to apply the method of the previous section.

6. ILLUSTRATIVE EXAMPLE

This example is based on a real process that measures hy-
drocarbon rate [1]. Figure 2 shows the output recorded sig-
nal to be restored. The method is first tested with the im-
pulse responsehi (i = 0 ; � � � ; N) shown in Figure 3. The
Figure 4 shows the result obtained.
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Fig 2 : Output signal.
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Fig 3 : Impulsional response of the process.
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Fig 4 : Restored signal.

The Figures 5 and 6 show the results by use of a pair of I/O
signals to perform blind deconvolution.
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Fig 5 : Pair of I/O for blind deconvolution.
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Fig 6 : Restored signal.

Robustness of the method

The Figures 7,8,9 show the results obtained when the output
is corrupted by noise.
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Fig 7 : Noisy output signal of the process SNR=42dB.
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Fig 8 : Filtered / Noise free output signalvar = 10�6:
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Fig 9 : Restored signal with� = 0:001:

7. CONCLUSION

We proposed a fast on-line deconvolution method, based on
optimal control and kalman filtering. In discrete-time we
have transformed the optimal control problem into the reso-
lution of anN -dimensional linear system equations,N be-
ing the number of samples. This configuration offers three
advantages confirmed by numerical results. The first, is the
possibility of fast deconvolution by solving a static linear
system of equations. The second advantage offers the pos-
sibility to use the impulse response of the plant. In fact,
the transformation of the impulse response in discrete state
equations, can not be used to solve the recurrent equations
related in section 2. These equations include a matrix Ric-
cati recurrent equation of dimensionN � N . Therefore,
after the linear system of equations has been set up, one just
have to store it in memory and then perform fast deconvo-
lution. The third advantage allows us to replace the infor-
mation given by the impulse response by the one given by a
pair of Input/Output of the process. With these advantages,
the method is fast, robust and is easy to work with.
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