
ABSTRACT

In noisy image sequences, block matching motion estimation
generates erroneous motion vectors since the algorithm tries to
correlate noise. We present an adaptive threshold test to detect
blocks for which only nonsignificant motion vectors can be
estimated. Vectors of these blocks are then assigned the zero
vector before any block motion estimation is performed. By
nonsignificant, we refer to motion vectors of non moving areas as
well as vectors of moving areas for which the noise level is too
high to allow a good estimation of the motion. The detection of
these vectors reduces the computational complexity of the BMA
and the entropy of the motion field. The algorithm is embedded in
a hierarchical BMA and takes advantage of their different
spectral characteristics to discriminate between the frame
difference energy due to noise and due to motion. The algorithm
is also efficient for low noise sequences where it can be used to
initialize a segmentation of moving objects from the background.

1. INTRODUCTION

Videoconferencing, movies and television are the standard
applications for video compression. For all these media, the
sequences to be processed are typically of good quality, with low
noise content. For other less traditional media, however, quality
of the image may not be as good,e.g., sonograms in medical
applications or infrared imagery for surveillance purpose. Our
application deals with a surveillance scenario for which infrared
images have to be compressed while allowing for the detection
and tracking of dim targets.

In noisy image sequences, motion estimation by block
matching algorithm (BMA) will often generate erroneous motion
vectors. Computational resources are spent trying to correlate
noise, and as a result, motion vectors often carry little or no
information. Our objective is to detect blocks for which only
nonsignificant vectors can be estimated, and set their motion
vectors to (0,0). By nonsignificant, we refer to motion vectors of
non moving areas as well as vectors of moving areas for which
the noise level is too high to allow a good estimation of the
motion. The detection of these vectors wil l  reduce the
computational complexity of the BMA and the entropy of the
motion field.

One way to detect moving regions is to threshold the
difference between two consecutive frames, as is done by Diehl
in [4]. Pixels with an absolute value above a certain level are
considered as moving and the others stationary. A block can then
be considered as stationary if the number of its stationary pixels

is higher than a given number. This procedure is described by
Salari and Lin in [1]. A block can also be labeled as stationary if
the energy of the frame difference is below a given threshold [5].
In the MPEG guide to coding [6], it is also suggested to use the
zero motion vector if its prediction error is slightly higher than
that of another vector because of possible coding gains. Such a
strategy, however, does not offer any savings in computation
time.

All these methods require we choose one or several
threshold values. We present in this paper an adaptive threshold
test for detection of nonsignificant vectors. The test uses an
estimation of the noise power of the image sequence and is
embedded in a hierarchical block matching algorithm (HBMA).
The threshold test is applied to low pass filtered images used by
the HBMA. Because of the different spectral characteristic of the
frame difference caused by noise and motion, we will see that
the low pass filter allows us to adapt the threshold value of the
test.

The paper is organized as follows. We present the image
model and the noise power estimation in the following section.
The proposed adaptive threshold test, and its motivation, are
presented in section 3. Results and conclusions follow in
sections 4 and 5.

2. NOISE POWER ESTIMATION

2.1. Image model

For the purpose of computing an estimate of the noise power, the
nth image of the sequence,In[x,y], is modeled as

(1)

where the signal is a random field of meanµS and
varianceσ2

S, and where the noise Nn[x,y] is a zero mean white
random field of varianceσ2

N. We further assume that there is no
correlation between the noise and the signal, and that there is also
no correlation between the random variablesNn-1[x,y] and
Nn[x,y]. Under these hypotheses, the variance of the difference
between two consecutive frames is given by

(2)

where , and where is the is
the correlation coefficient betweenSn-1 andSn.

I f  there is no motion between the two frames, the
correlation coefficientr  is almost 1 and we can neglect the
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second term in the equation. On the other hand, if there is
significant motion,r will be small and we can no longer neglect
the second term.

We use the variance of the frame difference to estimate the
noise power . However, because the term
cannot be neglected when there is significant motion between
two frames, we first filter the frame difference to remove all
pixels in areas where there is motion. The filter used to do so is
described next.

2.2. Structure detection filter

The filter we want to design must have the two following
characteristics: it must be able to detect the pixels of moving
areas, and it must not change the noise level of the sequence. To
do so, we have developed astructure detection filter. This filter is
based on the hypothesis that neighboring correlated pixels of the
difference frame  represent a moving object and
therefore cannot be used to estimate .

For each pixel, the filter looks at 4 neighboring groups of
pixels, as depicted in Figure 2.

If the average of one of these groups differs significantly from
the average of the difference frame , we assume that the
pixel is part of a structure, and therefore that it is in a moving
area. We assign to that pixel the mean value of  so that it
will not be used in our evaluation of the noise variance.

We use  to denote our estimator of , and its value is
given by

(3)

where  is the output of the structure detection filter
and is given by

(4)

where

, (5)

N is the number of pixels in a frame, and and  are
respectively the sample mean and sample variance ofD[x,y].

Note that the filter output at [x,y] does not depend on the
pixel value at [x,y]. Since we assume that the additive noise

 is white, the output of the detection filter does not
change the noise power even if some pixels are wrongly
assumed to be part of moving areas.

The results of the structure detection filter applied on the
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Figure 1.Patterns of the structure detection filter.
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difference between two noisy frames is given in Figure 3. The
constant  was set to 2 for all our tests. Note that the noise

power estimate does not have to be computed for each frame
since the noise level in a sequence typically is constant or varies
slowly.

3. ADAPTIVE THRESHOLDING

3.1. Hierarchical block matching algorithm

As we mentioned earlier, the threshold we proposed is embedded
in a hierarchical block matching algorithm (HBMA) which we
will now briefly describe in order to introduce relevant notation.
We use a simple two level HBMA, which means that both frames

 and  are first low pass filtered and then subsampled.
Then, for each block of  pixels, a motion vector is
computed using an exhaustive search block matching algorithm
[2]. This is accomplished by minimizing with respect to

, for a given block, the following expression:

(6)

where the symbol  denotes low pass filtered and subsampled
frames or quantities obtained with such frames. The exhaustive
search is then pursued at full resolution, but this time for a
smaller search area center around twice the vector value
identified at the lower resolution.

3.2. Simple thresholding

Before estimating a motion vector, the following threshold test
can be applied to determine if a block of pixels is stationary or if
a significant motion vector can be estimated:

α

(a)

(b)

Figure 2.Frame difference of img. 74 and 75 of NATO
sequence DIM10 (a) before and (b) after using the structure

detection filter.
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(7)

where  is a threshold constant and

(8)

We will later refer to the test of equation (7) (with K=1) as the
zeroth order test. If the test is positive, the block is assumed to be
similar to the one of the previous frame, and its motion vector is
set to (0,0). If the test is negative, we then proceed with the
estimation of the motion vector. This approach is similar to that
in [5] except that the noise power is estimated from the data
using equation (3).

Thus far, we have proposed a test but we have not discussed
how to set the value of the constant K. We should first note that
the mean squared difference, , using the image model
described in the section 2.1, can be rewritten as

(9)

where the symbol  is used here to denote sampled quantities
computed over a block of pixels as opposed to statistical
expectation.The first term of this equation is the noise
contribution, where the last two are the components due to block
motion. It is the relative importance of the first term with respect
to the last two that should determine the value of the constant

If the dominant terms are the last two, the threshold
constant should be small to take advantage of the motion
compensation. If, on the contrary, the dominant term is , we
would l ike  the constant  to  be large s ince mot ion
compensation is unlikely to generate a better prediction. In noisy
sequences, this may lead to a significant reduction of the
computation time since motion estimation will be performed for
fewer vectors.

Taking advantage of the different spectral characteristics of
the terms in (9), we will now present a simple test that will have
the behavior we have just described.

3.3. Implicitly adaptive threshold test

We propose the following test which implicitly adjusts the
threshold constant of equation (7):

(10)

where  is a block mean squared difference computed from
low pass filtered and subsampled frames. We will refer to this
test as the first order test since it is based on subsampled images.
Because the noise contribution to (9) is typically white, while the
motion contribution is correlated (i.e., has a low pass spectrum),
the low pass filtering of the frame difference will reduce
significantly the energy due to the noise compared to the energy
due to pixel displacement.

If there is no motion in the block, we can show that for
white noise with a first order low pass Gaussian filter

. (11)

This means that the test of equation (10) is equivalent to the
following test
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On the other hand, if the motion within a block is significant, the
frequency content of the frame difference will be in the lower
bands, as compared to the noise spectral distribution. This means
that the frame difference energy before and after filtering will be
similar. For the special case of an object of constant value
moving rapidly over a background of another constant value, the
frame di fference wi l l  be constant ,  which means that

. In this case, the test of equation (10) is

. (13)

The two limit cases we have just described show that the
first order test is equivalent to the test of equation (7) where the
constant  is adaptively changed to reflect the importance of the
frame difference energy due to motion compared to that due to
the noise.

When the noise energy is high compared to the energy due
to motion, the energy of the total prediction error must be
significantly smaller than the noise energy if we want to observe
a coding gain by using a nonzero motion vector. That is exactly
what the first order test is doing by reducing the value  to a
smaller value than that of . On the other hand, when the
noise energy is low compared to that due to the motion, the value
of  is kept close to that of , which means that the
outcome of the first order test is more likely to be negative and
motion compensation of the block will take place.

4. RESULTS

4.1. In noisy sequences

We have applied the proposed threshold test on both infrared and
standard video sequences. The infrared sequences are part of a
NATO set showing dim targets moving slowly. These sequences
are characterized by a high level of noise. Figure 3a shows a
frame of one of these sequences. In this example, the sequence
shows a village in the foreground with two dim targets in the
background. The targets are moving, and the camera is panning
the scene.

The motion field obtained with a standard BMA is shown in
Figure 3b. Figures 3c and 3d respectively show the motion field
obtained when the zeroth and first order threshold tests are used
prior to motion estimation. These results show clearly that the
motion field obtained with the first order threshold test is closer
to the scene’s true motion. Most of the nonsignificant vectors
have been zeroed out while the motion vectors in the target areas
have been correctly estimated. This was not the case with the
zeroth order test for which a significant number of nonsignificant
vectors have been estimated.

4.2. In noiseless sequences

We present in Figure 4 results obtained on the video sequence
football. Figures 4a and 4b respectively show a frame of the
sequence, and the motion field obtained with a standard BMA.
The motion fields obtained with both threshold tests are shown in
Figures 4c and 4d.
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Note that in this case, the motion fields obtained with both
threshold tests are similar. This was expected since for this
sequence, the noise level is small and the frame difference
energy is dominated by the motion of the players. These tests
therefore show that, as we argued, the energy of the frame
difference before and after filtering does not differ significantly.

The motion field obtained with the threshold tests differ
from the one computed by BMA in the textured areas. The
structure detection filter used to eliminate moving areas before
estimating the noise power cannot identify the textured areas as
moving. These textured areas are therefore used to estimate the
noise power, and then are treated as such by the threshold tests.
This behavior should not cause any problems since the human
visual system is not sensitive to texture. Coding errors in these
areas can therefore be more severely quantized. Further tests
have to be done to assess more precisely this effect.

However, as presented, the proposed test can also be used to
initialize a segmentation of moving objects from a textured
background. This type of segmentation is typically part of
object-oriented coders like the one proposed in MPEG4.

5. CONCLUSION

We have presented in this paper an adaptive motion detection
threshold test. This test takes advantage of the difference
between the spectral content of noise and the spectral content of
structures generated by motion in a frame difference to implicitly
adjust a threshold constant. The proposed test, embedded in a
hierarchical block matching algorithm, can significantly speedup
the motion estimation by assigning the zero vector to blocks
dominated by noise and for which no significant motion vectors
can be estimated. As shown by the results, this algorithm is

particularly efficient in noisy sequences. As presented, this
algorithm can also be used with standard video sequences,
typically characterized by a lower noise level. In this case, the
algorithm can be used to initialize a segmentation of moving
objects from textured backgrounds.

By replacing the noise power estimate by that of the energy
of the quantization noise after the encoding of the displaced
frame difference, the proposed algorithm can also be used in an
MPEG coder to adaptively adjust the threshold test used to
decide on the coding mode of a macroblock.
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Figure 4. Motion field between football images 135 and 136. (a) Image 135, (b) BMA, (c) Zeroth order test (K=1), (d)First order test.
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Figure 3. Motion field between images 74 and 75 of the NATO sequence DIM10. (a) Image 74, (b) BMA, (c) Zeroth order test (k=1),
(d) First order test.
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