
COMBINING MULTIPLE ESTIMATORS OF SPEAKING RATE

Nelson Morgan and Eric Fosler-Lussier

International Computer Science Institute, 1947 Center St, Berkeley, CA 94704
University of California at Berkeley, EECS Department, Berkeley, CA 94720

Tel: (510) 643-9153, FAX: (510) 643-7684, Email: fmorgan, foslerg@icsi.berkeley.edu

ABSTRACT
We report progress in the development of a measure of speaking
rate that is computed from the acoustic signal. The newest form
of our analysis incorporates multiple estimates of rate; besides
the spectral moment for a full-band energy envelope that we have
previously reported, we also used pointwise correlation between
pairs of compressed sub-band energy envelopes. The complete
measure, called mrate, has been compared to a reference syllable
rate derived from a manually transcribed subset of the Switch-
board database. The correlation with transcribed syllable rate is
significantly higher than our earlier measure; estimates are typ-
ically within 1-2 syllables/second of the reference syllable rate.
We conclude by assessing the use of mrate as a detector for rapid
speech.

1. INTRODUCTION

We and others have been looking at the effects of speaking rate in
continuous speech for several years, as reported in e.g., [6], [4].
We have found that there are strong measurable effects on acous-
tic distributions and on durations. We have also begun to explore
effects on pronunciation; for some words, pronunciation probabil-
ities can change significantly due to rate, e.g. for the monosyllabic
word shown in Table 1. All of these effects are reflected in the
word error rates of automatic speech recognition systems, which
we and others have consistently shown to be significantly affected
by speaking rate.

In order to explore the effects of speaking rate on recognition,
we must first define a reference measure. We have found that
syllables per second over a speech “spurt” (between-pause region)
appears to be a reasonable measure. In the case of syllabically
transcribed data, this is derived by simply counting the syllables
and dividing by the segment length. As a reference point, we have
used this measure for some of the experiments described in this
paper. Of course, syllabic transcriptions are not accessible during
the operation of a speech recognition system, so it is necessary
to design a measure that can be computed without a transcription
of what was said. In [4] we described the tactic of running the
recognizer twice, using the first pass to hypothesize sound unit
boundaries and hence the speaking rate, which would then be in-
corporated in a second pass; when the rate was only going to be
classified as “fast” or “not fast” this could also be done by running
two recognizers and taking the most probable result. However,
aside from the additional computation, this method requires the as-
sumption that the speaking rate determined by a potentially errorful
recognition hypothesis would be sufficiently accurate. For difficult
tasks such as conversational speech recognition, this is often not
the case, particularly for unusually fast or slow speech.

pronunciation low rate high rate

b ih n 0.6087 0.3636
other 0.3913 0.6364

Table 1: Probabilities for canonical and non-canonical pronunci-
ations for the monosyllabic word “been”, evaluated for one hour
of Switchboard speech. The threshold between “high” and “low”
was the median syllable rate for the between-pausespurt containing
each target syllable, and was computed from manual transcriptions.

Consequently, we have also worked to develop a measure of
speaking rate that is only dependent on the acoustic signal. We
previously reported in [5] an estimator called enrate, which was
essentially the first spectral moment of the broad-band energy en-
velope. Kitazawa [3] also reported a full-band measure that was
very similar (taking the dominant spectral peak of the long term en-
velope spectrum, rather than the moment). Enrate was correlated
with transcribed syllabic rate, but the deviations were large. Since
that work, we have developed an improved measure that we have
called mrate, short for multiple rate estimator. Mrate, described
below, appears to be a much closer match to transcribed syllable
rate than enrate.

Mrate incorporates multiple estimators, a technique that has
been shown to be beneficial for many aspects of speech analysis,
such as the parallel pitch detection approach developed by Gold
and Rabiner 30 years ago [1]. As in that case, using multiple
estimators significantly improves the error variance.

2. SIGNAL PROCESSING METHODS

As noted above, we have previously used enrate as a measure of
speaking rate [5]. Enrate is the first spectral moment of the wide-
band energy envelope, typically computed over 1-2 seconds and
restricted to roughly the spectral range from 1 to 16 Hz. That
is, for x(n) a half-wave rectified and low-pass filtered speech
signal, w(n) a Hamming window for the analysis region, and
Y (k) = DFT (w(n)x(n)), we compute
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Note that the result is in units of frequency increments defined
by the inverse of the analysis window length — for a 1 second
window, the result is in Hz. The starting analysis point s is chosen



to reduce the effect from dc content in the energy envelope as
measured by the windowed signal (typically 2 bins for a Hamming
window), and endpointK is chosen to correspond to 16 Hz.

We have found enrate to be useful in characterizing some of
the properties of conversational speech. However, for a one hour
subset of the manually transcribed Switchboard data, we found
that the correlation between transcribed syllable rate and enrate
was only about .4 (when both were measured over between-pause
spurts). After a range of experiments, we have found that an
average between enrate and two different peak-countingestimators
gives us much better performance, showing a correlation of over .6
on the same data set. We are dubbing the new measure mrate for
its use of multiple rate estimators. The second estimator used in
the average is a simple peak counting algorithm performed on the
wide-band energy envelope. The most effective of the three is a sub-
band-based module that computes a trajectory that is the average
product over all pairs of compressed sub-band energy trajectories.
That is, if xi(n) is the compressed energy envelope of the ith

spectral band, we define a new trajectory y(n) as

y(n) =
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where N is the number of bands and M = (N)(N�1)
2 is the

number of unique pairs.
Peak counting is also used in this module. While this approach

is already more accurate than enrate, averaging with the other two
appeared to be beneficial. Therefore, it is this average measure
that we use in the experiments described below. See Figure 1 for a
block diagram of the process.

In preliminary experiments, we worked with smaller subsets of
manually transcribed Switchboard data. Some of the decisions that
we made based on the performance for this reduced set included:

1. Cube root compression for the sub-band energy envelopes
appeared to be more effective than other compressions tried
(square root or 4th root).

2. Relatively gentle modulation filters appeared to give better
performance than very steep filters.

3. The average product of all sub-band energy pairs (6 com-
binations for 4 bands) appeared to work more reliably than
summing compressed energies over the bands.

4. Normalization within each band was necessary. The result-
ing measure was independent of both overall energy and
spectral slope.

Given these design decisions, we found that the average of en-
rate and the full-band and sub-band-basedpeak counting measures
was significantly more correlated to transcribed syllable rate than
any of the measures by themselves. Interestingly, the simple aver-
age gave essentially the same correlation as the best least squares
weighting of the three component estimates, although the latter
computation yielded very uneven weights.

We then applied the estimators to a much larger set of manually
transcribed Switchboard syllables, as described below.

3. EXPERIMENTAL METHODS

The data used are from 5757 utterances found in the Switchboard
corpus, comprising approximately four hours of data. These ut-
terances were phonetically hand transcribed by linguists in the
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Figure 1: Major steps in the calculation of mrate. The band-
pass processing currently uses steep FIR filters with band edges of
(300,800), (800,1500), (1500,2500), and (2500,4000). Estimation
is typically done over 1-2 seconds; for the experiments reported
here, we used between-pause intervals, which varied from .25 to 6
seconds, but which were most typically between .5 and 2 seconds.

Switchboard Transcription Project at ICSI [2]; the transcriptions
consisted of phonetic identities with syllabic boundary markings,
as phonetic boundaries were often difficult to determine in this
conversational speech context.

Utterances were segmented into spurt regions using the tran-
scribers’ pause markings, providing 7994 regions for analysis. A
transcribed syllable rate was computed by dividing the number of
syllables occurring in the region by the length of the spurt. We also
computed enrate and mrate for each region. A separate 22-minute
portion of the development test set was also prepared in the same
way, providing 872 segments of test material from 441 utterances.

In order to assess the improvement of mrate over enrate, we
treated the transcribed syllable rate as a gold standard, and com-
puted correlations between each of the estimates and the syllable
rate. We also determined the difference between the standard and
the estimates in order to find the bias and variance of each measure.

Finally, we attempted to use mrate as a predictor of speaking
rate in a three-class problem. The training set was divided into
three equal parts (slow, medium, and fast) based on transcribed
syllable rate. We then used the corresponding partition points set
to determine rate classes for the development test set. In a first test,
we generated a Receiver Operating Characteristic (ROC) curve for
the problem of detecting “fast” speech, as defined by the test set
labels for the 3 rate classes. To build this curve for a rate measure



measure correlation mean error stddev error

enrate .415 .747 1.405
sub-mrate .637 .530 1.219

mrate .671 .464 1.121

Table 2: Relationship between syllable rate computed from manual
transcriptions and three signal processing measures. Results were
computed for roughly 3 hours of between-pause segments taken
from 4 hours of conversational speech in the Switchboard corpus.

under test, we varied its threshold and assessed correct detection
percentages; non-fast segments that fell above the threshold were
counted as false positives.

Since recognition systems are often adapted towards faster or
slower speech (instead of building completely separate models for
speech extremes), medium-rate speech that is misclassified as fast
often does not have as devastating an effect as slow speech that
the detector mis-classifies as fast. Therefore, we also computed
ROC curves ignoring the effect of mid-speed segments to assess
the tradeoffs between the accuracy of fast speech detection and the
frequency of detections that are strongly in error.

4. RESULTS AND DISCUSSION

Figure 2 shows a scatter plot of mrate versus transcribed syllable
rate for the roughly 8000 between-pause spurts. As shown in table
2, the correlation between the two measures is about .67, which
roughly corresponds to 45% of the mrate variance being accounted
for by a linear relationship with transcribed syllable rate. The
overall diagonal trend is discernible in the scatter plot, though it is
apparent that much of the variance is due to other factors than the
transcribed rate. We have noted in a number of individual cases
that a high speakingrate sometimes results in the smearing together
of energy peaks, even in sub-bands, which makes it particularly
difficult to derive a high number of syllables for that segment.
For ostensibly slow segments, there are sometimes high energy
phonetic onsets that are strongly correlated across bands and form
distinct peaks that are usually associated with syllable onsets; this
effect tends to increase the measure past the transcribed rate.

Despite these limitations, mrate is clearly a better estimate of
transcribed syllable rate than enrate was. As noted in Table 2, we
have observed strong improvements in correlation, mean error, and
error variance (standard deviation) with respect to the transcription-
based standard. The sub-band component of mrate provided much
of this improvement, as shown in the table in the sub-mrate row,
but the complete measure is still significantly better.

Figure 3 shows an ROC curve for the detection of “fast” seg-
ments. For the purpose of this figure, we labeled as a false positive
any segment that had been falsely classified as a “fast” (upper third
in transcribed syllable rate, with the threshold determined from the
training data). In this case as with the correlations, mrate is clearly
much better than enrate for any choice of operating point.

Figure 4 displays the mrate ROC curve for the relaxed criterion,
in which segments were only counted as false positives if they were
strongly misclassified as fast (i.e., came from the bottom third of
transcribed syllable rates).
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Figure 2: mrate versus transcribed syllable rate on roughly 3 hours
of Switchboard between-pause segments taken from 4 hours of
speech.

Similar curves have been observed for both criteria for the
detection of unusually slow speech,but are omitted here for brevity.

Any particular choice of an mrate threshold corresponds to
an operating point on the ROC curve. For mrate thresholds cor-
responding to the thirds of the data observed in the training set,
classification results are shown in the confusion matrix of Table 3.
Note that when 58% of the fast segments are detected, 13.1% of
the slow segments are falsely detected as fast.

mrate categories
transcribed rate slow medium fast nsegs

slow 57.9% 29.0% 13.1% 214
medium 24.6% 43.8% 31.6% 272

fast 9.6% 32.4% 58.0% 386

Table 3: Confusion matrix between rate categories using tran-
scribed rate versus mrate, with thresholds determined from 3 hours
of data and results given for an independent 22 minute test set.
Confusions are normalized for each of the transcribed categories
so that percentages in each row sum to 100%. The matrix is aug-
mented by a column giving the number of test set examples in each
transcribed category. The uneven spread for categories chosen to
split the training set into thirds shows that this particular test set
has a higher proportion of “fast” segments than were found in the
training set.
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Figure 3: ROC curve for detection of fast between-pause segments
in the test set, where “fast” is defined as the upper third of the
training set distribution, according to manually transcribed syllable
rate. The upper curve uses mrate,while the lower curve uses enrate.

5. CONCLUSIONS

We have developed mrate, a new method for estimating speaking
rate from the acoustic signal. It can be used to detect unusually
rapid or slow speech. For the conversational speech test set we
evaluated, it assessed the transcribed syllable rate for a between-
pause segment with an error whose standard deviation is 1.1. Once
compensated for the difference in training set means, mrate was
within 1 syllable per second of the transcribed rate 63% of the
time, and within 2 syllables per second 88% of the time. Even with
this spread, mrate may be useful for the detection of speech that is
exceptionally rapid or slow. This has potential applications in the
adaptation of duration models during speech recognition, as well
as to dynamic pronunciation modeling.

The accuracyof the measure seemed to benefitgreatly from the
use of multiple estimators, some of which counted peaks and one
of which incorporated a long term spectral estimate. The measure
also seemed to benefit from the use of a pointwise cross-correlation
between all pairs of spectral bands. This cross-sub-band measure
was more correlated with syllable rate than any of the individual
full-band measures we tried.
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Figure 4: ROC curve for detection of fast between-pause segments
in the test set. For this curve, segments with transcribed rates in the
middle-third are not counted as either hits or false positives in the
test. The figure shows the gap between training and test set curves.
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