
A HIGHLY-SCALEABLE FIR USING THE RADIX-4 BOOTH ALGORITHM

Oscal T.-C. Chen, Wei-Lung Liu

Signal and Media Laboratories,
Department of Electrical Engineering,

National Chung Cheng University,
Chia-Yi, Taiwan, R.O.C.

Hsun-Chang Hsieh, Jeng-Yih Wang

Digital Signal Processing Dept.,
Computer & Communication Research Lab.,

Industrial Technology Research Institute,
Hsinchu, Taiwan, R.O.C.

ABSTRACT

A highly-scaleable FIR architecture based on the radix-4 Booth
algorithm has been designed with scaleable dynamic ranges of
input data and filter coefficients. The radix-4 Booth algorithm is
demonstrated to have a lower hardware complexity and a fair
throughput rate than the other radix approaches. In order to
achieve scaleability, the configurable-connection function
between latches of input data, and filter taps has been explored.
The precision of filter coefficients is adjustable by using a path-
control function. Especially, the proposed architecture only
employs data-path controls to realize the scaleable issue without
changing the word lengths and components of input latches and
filter taps. The pre-processing unit for manipulating input data
and post-processing unit for computing accumulation results have
been realized to support scaleable operations. Based on our
architecture in a chip design, the cascaded configuration between
chips is also easily accomplished for many industrial
applications.

1. INTRODUCTION
Filters of finite impulse response applied in real-world
applications have many advantages of easy implementation, noise
immunity, sharp cut-off frequencies, high stability and so on [1].
The major operation of a FIR filter is the convolution that is
realized by using adders, multipliers, and delay elements.
However, a multiplier takes a lot of computational time to
perform its function. In order to reduce the complexities, high-
speed FIR filters without using multipliers have been proposed by
many researchers [2-4]. These multiplierless filters can be
classified by a memory-based approach, a canonical signed-digit
(CSD) approach, and a Booth-algorithm approach.
The simplified FIR design in the above three approaches allows
easy incorporation of programmability. However, scaleable
dynamic ranges of input data and filter coefficients are not
straight-forward achievable. In the memory-based FIR design, the
word length of input data and precision of filter coefficients are
usually fixed for one memory configuration. In order to achieve
scaleability, we have to configure the memory cells and rearrange
connections among taps. Due to high cost of the original
architecture for a large dynamic data range, the memory-based
FIR may not be a good candidate for scaleable design. In the CSD
FIR design, filter coefficients are easily scaleable but functional
units in each tap require the maximum word-length design. All
CSD taps are directly addressed by every input datum using the
fixed word-length hardware. When considering a large dynamic
range of input data, we need partition input data to be a sub-
datum sequence. Hence, there is a need of the complicated tap

design to support this data flow. The scaleable CSD FIR cannot
be realized at a low cost.
In the Booth-algorithm FIR design, bit-level input data can be
easily scaled for different dynamic ranges, and precision of filter
coefficients can be adjustable due to the regular structure of each
tap. Here, we propose a new architecture of scaleable FIR based
on the Booth algorithm. This architecture provides users more
flexibly to manipulate input data and filter coefficients.
Especially, the proposed architecture only employs data-path
controls to accomplish the scaleable issue. In addition, the pre-
processing unit for manipulating input data and post-processing
unit for computing accumulation results have been designed to
support scaleable operations. When considering the proposed
architecture in a chip design, cascading capability between chips
for a FIR with a large number of taps is also addressed for many
industrial applications.

2. MODIFIED BOOTH ALGORITHM
In 1951, Andrew Booth presented the radix-2 algorithm to
multiply two signed 2’s complement numbers, which was a
simplified high-speed multiplication operation. Since then, other
researchers have proposed many modified Booth’s algorithms in
high radices to improve computational efficiency [5,6]. By using a
high-radix Booth algorithm, fewer partial products are required to
accomplish a final result but generation of these partial products
is more complicated. Therefore, it is very critical how to
incorporate an adequate radix number of Booth algorithm in a FIR
design with low-cost and high-speed performances.
The radix-2 multiplication is realized by using decoding,
addition, subtraction, and shifting operations. Based on every
neighboring two bits of input data, the decoding operation
determines the intermediate products. The shifting operation
scales these intermediate products to be correct forms for addition
or subtraction. As compared to the conventional multiplication,
this approach shows very efficient and easy in hardware
implementation. However, the radix-2 Booth algorithm requires
W additions per multiplication where W is the word length of
input data.
The multiplication interpreted in a high radix is a powerful
method to achieve a high-speed performance. Here, FIR using the
radix-4 Booth algorithm is introduced with input data of X and
filter coefficients of C. Each datum of Xi is partitioned into many
3-bit groups, triplets, each of which has one bit overlapped with
the previous group. This triplet can be represented by the
following,

{ }Ù ù ù ùê í ê

í

ê

í

ê

í

 = + −³ ² ³ ³ ² (1)

where l=0, 1, …,Ø ° ³ ²− , ù ê

ë is the jth digit of Xi and

ù
ê

− =²

± . ù
ê

í³ ²− is overlapped with the previous triplet of

Xi,l-1 such that the 2’s complement of Xi can be represented by

Ù ù ùê ê

Ø Ø

ê

ë ë

ë

Ø

= − × + ×− −

=

−

∑² ²

±

³

³ ³

 ()= − + + ×+ −

=

−

∑ ³ ³
³ ² ³ ³ ² ³

±

³ ²

ù ù ùê

í

ê

í

ê

í í

í

Ø ° (2)

When considering Cj multiplied with Xi, the equation (2) is
modified to

()Ä Ù ù ù ù Äë ê ê

í

ê

í

ê

í

ë

í

í

Ø

× = − + + × ×+ −

=

−

∑ ³ ³
³ ² ³ ³ ² ³

±

³ ²°

 ()= ×
=

−

∑ Ã Ù Äê í ë

í

í

Ø

°

 ³ ³

±

³ ² (3)

According to Eq. (3), ()Ã Ù Äê í ë

 is the intermediate product

which can be represented by 5 different values,

()Ã Ù Ä

Ä

Ä

Ä

Ä

ê í ë

ë

ë

ë

ë

 = −

−

±

³

³

i f

i f

i f

i f

i f

{ } { }
{ } { }
{ } { }
{ }
{ }

Ù

Ù

Ù

Ù

Ù

ê í

ê í

ê í

ê í

ê í

=
=
=
=
=

± ± ± ² ² ²

± ² ± ± ± ²

² ² ± ² ± ²

± ² ²

² ± ±

 (4)

From Eq. (3), we observe that convolution between the input data
and filter coefficients requiresØ ° ³ summations based on the
intermediate products of -2Cj, -Cj, 0, Cj, and 2Cj. In such an
approach, the intermediate products are easily obtained by using
1-bit shifting, and/or setting the carry-in bit of an adder to logic-
1 and inverting the input signal for -Cj, 2Cj or -2Cj. Hence, the
complexity of decoding function in the radix-4 approach is very
low.
When considering a higher radix approach, radix-8 multiplication
groups 4 bits of X at a time with one bit overlapped with the
previous set. Its intermediate products consist of -4Cj, -3Cj, -2Cj,
-Cj, 0, Cj, 2Cj, 3Cj, and 4Cj. The 3Cj requires an additional
hardware component to implement itself. Although the radix-8
approach reduces intermediate addition steps for a shorter
latency, each step takes little more hardware complexities than
that in the radix-4 approach. Furthermore, a radix-16
multiplication employs 5 bits of X at a time with one bit
overlapped with previous set. The intermediate products include
-8Cj, -7Cj, -6Cj, -5Cj, -4Cj, -3Cj, -2Cj, -Cj, 0, Cj, 2Cj, 3Cj, 4Cj, 5Cj,
6Cj, 7Cj, and 8Cj. The 3Cj, 5Cj, 6Cj, and 7Cj needs additional
hardware components to realize themselves.

In order to effectively analyze hardware complexity, we explored
an N-tap FIR using the Booth algorithm, which is shown in Fig. 1.
The requirement of data latches for storing input data in different
radix approaches is considered. The 3Cj, 5Cj, 6Cj, and 7Cj are
simply implemented by using data latches. Table 1 lists the
comparison of hardware complexities and throughput rates of
radix-2, radix-4, radix-8, and radix-16 approaches. The hardware
complexity of radix-4 approach is smaller than those of radix-8
and radix-16 approaches if Í Ï Ø Ï× + × −´

³
²© ª is

smaller than © ª © ª³ ³ ²µ

´
Í Ï Ø Ï+ × + × − and

© ª © ª¶ ² ² ²¶

µ
Í Ï Ø Ï+ × + × − . Here, L and W are the

word lengths of filter coefficients and input data, respectively.
Especially, we can summarize these two conditions to that of
6L+12 larger than Ø

Ï
× −© ª² ² , which is always true for

reasonable dynamic ranges of input data and filter coefficients.
When considering routing and multiplexing of decoding
functions, the radix-4 approach always has a lower complexity
than radix-8 and radix-16 approaches. In addition, the hardware
complexity of radix-4 approach can be smaller than that of radix-2
approach due to less requirement of input data latches. On the
other hand, the throughput rate of radix-4 approach is worse than
those of radix-8 and radix-16 approaches, and better than that of
radix-2 approach. Therefore, the radix-4 approach in the FIR
design can have the least hardware complexity and a fair
throughput rate.

3. PROPOSED FIR ARCHITECTURE
The VLSI implementation plays a key role in developing high-
speed, low-cost, light-weight, and low-power applications. Based
on pipeline, parallel, or programmable schemes, various FIR
architectures have been proposed by many researchers to pursue
high-throughput and cost-effective designs. The main challenge
would be to optimize flexible architectures for various FIR
applications at a low cost. In this paper, we propose a
programmable FIR architecture with scaleable dynamic ranges of
input data and filter coefficients. This design provides users more
flexibly to handle the dynamic data ranges as well as
programmable coefficients.

A previous example of the N-tap FIR with output data of Y is
illustrated further. The relationship between input signals and
output signals can be described as follows,

Ú Ä Ù
ï ê ï ê

ê

Ï

= × −
=

−

∑
±

² (5)

The multiplication between Ù
ï ê−

 and Ä
ê

 can be accomplished

by the radix-4 Booth algorithm. By applying Eq. (3) to Eq. (5) , we
can obtain

Ú Ä Ù
ï ê ï ê

ê

Ï

= × −
=

−

∑
±

²

()= ×

−

=

−

=

−

∑∑ Ã Ù Ä
ï ê í ê

í

í

Ø

ê

Ï

°

 ³
³

±

³ ²

±

² (6)

According to Eq. (6), we can construct the FIR architecture
requiring accumulations in each tap to sum up intermediate
products. In such a design, each tap consists of a coefficient latch,
a Booth decoder, an adder, a 2-to-1 multiplexor, and an
accumulation latch, as shown in Fig. 1. In order to improve this
architecture, Lee et al. rearranged Eq. (6) to obtain the following
equation [2],

()Ú Ã Ù Ä
ï ï ê í ê

ê

Ï

í

í

Ø

=

 ×−

=

−

=

−

∑∑

°

±

²
³

±

³ ²

³
 (7)

Based on Eq. (7), the modified FIR architecture is shown in Fig. 2.
The accumulation in each tap is moved to the post-processing unit

such that the word length and hardware components of each tap
are optimized. In order to achieve scaleable dynamic ranges of
input data and filter coefficients, Eq. (7) is modified by the
following way,

()Ú Ã Ù Äï

ë

Ô

ï ê í ê ë

ê

Ï
í

í

Ø

=

 ×

=
−

=

−

=

−

∑ ∑∑
± ±

²

³

±

³ ²

³

°

 (8)

where Ci,j is the jth sub-precision component of Ci, and S is the
number of sub-coefficients. According to Eq. (8), scaleability can
be realized in the control of W and S. Since input data are recoded
in the radix-4 format, scaleable data ranges can be pursued by
configuring the connections between input data latches and filter
taps. In such a design, various dynamic ranges can be achieved
when the pre-processing unit provides the correct triplet sequence
and the post-processing unit provides an enough data bandwidth
for accumulation of intermediate results. On the other hand,
precision of filter coefficients can be scaled by configuring the
connections among taps while the post processing unit can sum
the sub-precision values to yield a correct result. Figure 3 shows
the proposed scaleable architecture in the FIR design. Especially,
our architecture only employs data-path controls to realize the
scaleable issue, which can make the FIR design more regular and
low-cost.
In the implementation of our scaleable FIR, it is very important
how to efficiently and effectively realize the configurable
connections. For designing scaleable dynamic ranges of input
data, simple multiplexors can be utilized to configure the
connection topology as shown in Fig. 4. The paths of each filter
tap connected to several input data latches are controlled by a
multiplexor for different scaleable ranges. Only one path is
enabled to link a filter tap to the corresponding latch of input data.
The control unit interprets scaleable ranges and generates control
signals for multiplexors to determine the correct paths.
Precision of filter coefficients can be adjusted by controlling data
paths among taps. Since the word length of latches for storing
filter coefficients is fixed, we can arrange a filter coefficient
stored in several latches. According to Eq. (8), each filter
coefficient is partitioned into several non-overlapped sub-
coefficients which are individually utilized in the decoding
function of the Booth algorithm. However, the sign bits of non-
overlapped sub-coefficients require additional consideration as
follows,

Ä ä äê ê

Ñ Ñ

ê

ë

ë

Ñ
ë= − × + ×− −

=

−

∑² ²

±

³

³ ³

= − × + × + ×

− ×
= = +

< −
− +

=

+ −
− −∑ ∑

ì ì ì

õ Ñ

ê

Ñ õ

ê

ë

ë ì

ì

ë

ê

Ñ õ

ê

Ñ

Ñ

Ô

Ñ

Ô

Ñ

Ô

ä ä ä ä

±

²

²

²

² ² ±
³ ³ ³ ³

¼

 (9)

where ci
k is the kth digit of Ci, and P is the coefficient precision. In

other words, the sign bit of a filter coefficient becomes the sign
bits of its sub-coefficients. In order to compensate the additional
negative values, the least significant bit of all sub-coefficients
except the lowest-precision one is added by this sign bit.
In the design of the path-control function, the main idea is to
arrange the accumulation relationship among the decoded values
of sub-coefficients and input data. In order to effectively to realize
the path-control function, a latch is required in neighboring taps.
The post-processing unit is utilized to sum the partial results for
generating a correct-format value. Figure 4 shows the path-control

function in the FIR design, which consists of N multiplexors
addressed by the control unit.
The pre-processing unit for manipulating input data and the
post-processing unit for generating output results are designed to
support the scaleable FIR computing. The pre-processing unit, as
shown in Fig. 5, consists of an input buffer, a data latch, a
comparator, a ripple counter, and a multiplexor. The input buffer
is used to store various dynamic ranges of input data. The data
latch records the maximum value of the counter for the
currently-used dynamic data range. The comparator is to compare
the output value of the counter with that of the data latch. If they
are the same, the counter is cleared to zero. The ripple counter is
utilized to generate the control signals of the multiplexor for
selecting the three-bit data in a correct sequence. On the other
hand, the post-processing unit performs accumulation for final
results. First, the selector of sub-precision results is used to
determine the effective data according to the operation mode of
coefficient precision. These effective results with sign extension
are summed to become a correct output result by using the adder
tree. The output results are accumulated at Ø ° ³ times for a
final convolution value. Figure 6 shows the post-processing unit
of which major components are adders, shifters, latches, and
multiplexors for supporting various dynamic ranges of input data
and filter coefficients.
If the tap number of FIR cannot be realized in one chip, the last
latch of input data is connected to the output pins for cascading
next chip. However, the latches of input data may be not
completely used due to the configurable connections for various
dynamic data ranges. The bypass design can be utilized to get rid
of the serial pipelined flow. The last datum for filter operations in
the first chip can be easily transmitted to the input latch of the
second chip without delay. On the other hand, the accumulated
result in the first chip is also transmitted to the post processing
unit of the second chip. In such a design as shown in Fig. 7, the
chip cascading can be easily accomplished without additional
off-chip logic functions.

4. REFERENCES

[1] A. Oppenheim, R. Schafer, Discrete-Time Signal Processing,
Prentice Hall, New Jersey, 1989.

[2] H. Lee, C. Jen, C. Liu, “A new hardware-efficient
architecture for programmable FIR filters,” IEEE Trans. on
Circuits and Systems - II: Analog and Digital Signal Proc.,
pp. 637-644, Sept. 1996.

[3] K. Khoo, A. Kwentus, A. Willson, “A programmable FIR
digital filter using CSD coefficients,” IEEE Journal of
Solid-State Circuits, vol. 31, no. 6, pp. 869-874, June 1996.

[4] C. Golla et al., “A 30M samples/s programmable filter
processor,” Digest of IEEE Int’l Solid-State Circuits Conf.,
pp. 116-117, 276, Feb. 1990.

[5] R. Katti, “A modified Booth algorithm for high radix fixed-
point multiplication,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 2, no. 4, pp. 522-524, Dec. 1994.

[6] P. Madrid, B. Millar, E. Swartzlander, “Modified Booth
algorithm for high radix fixed-point multiplication,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 1,
no. 2, pp. 164-167, June 1993.

Fig. 1 The N-tap FIR using the Booth algorithm

Fig. 2 The modified FIR with accumulation-free taps.

Fig. 3 The proposed scaleable FIR architecture.

Fig. 4 The design of configurable-connection and path-control
functions for the proposed FIR.

Table 1 The comparison of hardware complexities and
throughput rates of radix-2, radix-4, radix-8, and radix-16
approaches.

 Schemes

Features

Radix 2 Radix 4 Radix 8 Radix 16

coefficients L�N L�N (2L+2) �N (5L+11) �NLatches

(bits) input data 2W(N-1) 3
2
W (N-1) 4

3
W (N-1) 5

4
W (N-1)

Throughput rates C

W
2C

W

3C

W

4C

W
Bit number of the required
latches:
Example:

L=8, W=8, N=64

1520 1268 1824 3894

(Note: N: number of FIR taps; W: word length of input data; L:
word length of coefficients; C: clock rate.)

Fig. 5 The pre-processing unit.

Fig. 6 The post-processing unit.

Fig. 7 Chip cascading of the proposed FIR.

