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ABSTRACT
In the field of mobile communications correct Voice Activity
Detection (VAD) is a crucial point for the perceived speech
quality, the reduction of co-channel interference, the power
consumption in portable equipment. This paper shows that a
valid alternative to deal with the problem of activity decision is
to use methodologies like fuzzy logic, which are suitable for
problems requiring approximate rather than exact solutions, and
which can be presented through descriptive or qualitative
expressions. The Fuzzy Voice Activity Detector (FVAD)
proposed uses the same set of parameters adopted by the VAD in
Annex B to ITU-T G.729 and a set of six fuzzy rules
automatically extracted through supervised learning. Objective
and listening tests confirm a significative improvement respect
the traditional methods above all for low signal-to-noise ratios.

1. INTRODUCTION
A Voice Activity Detector (VAD) aims to distinguish between
speech and several types of acoustic background noise even with
low signal-to-noise ratios (SNRs). Therefore, in a typical
telephone conversation, a VAD, together with a comfort noise
generator (CNG), achieves a silence compression. In the field of
multimedia communications, silence compression allows the
speech channel to be shared with other information, thus
guaranteeing simultaneous voice and data applications [1]. In a
cellular radio system that uses the Discontinuous Transmission
(DTX) mode, such as the Global System for Mobile
communications (GSM), a VAD reduces co-channel interference
(increasing the number of radio channels) and power
consumption in portable equipment. Moreover, a VAD is vital to
reduce the average bit rate in future generations of digital cellular
networks, such as the Universal Mobile Telecommunication
Systems (UMTS), which provide for variable bit-rate (VBR)
speech coding. Most of the capacity gain is due to the distinction
of speech activity and inactivity.
The performance of a speech coding approach based on phonetic
classification, however, strongly depends on the classifier which
must be robust to every type of background noise [2]. As is well
known, for example, above all with low SNRs, the performance
of a VAD is critical for the overall speech quality. When some of
speech frames are detected as noise, intelligibility is seriously
impaired due to speech clipping in the conversation. If, on the

other hand, the percentage of noise detected as speech is high,
the potential advantages of silence compression are not obtained.
In the presence of background noise it may be difficult to
distinguish between speech and silence, so for voice activity
detection in wireless environments more efficient algorithms are
needed [3][4].
The activity detection algorithm proposed in this paper is based
on a pattern recognition approach in which the feature extraction
module uses the same set of acoustic parameters adopted by the
VAD recently standardized  by ITU-T in Rec. G.729 annex B
[5], but basing the matching phase on fuzzy logic. Through a
series of performance comparisons with the ITU-T G.729 Annex
B VAD and the VAD standardized by ETSI for the Full Rate
GSM codec [6], varying the type of background noise and the
signal-to-noise ratios, we outline the validity of the new
methodology in terms of both communication quality
improvement and bit-rate reduction as compared with the
traditional solution.

2. THE FUZZY VAD ALGORITHM
The functional scheme of the Fuzzy Voice Activity Detector
(FVAD) is based on a traditional pattern recognition approach.
The four differential parameters used for speech
activity/inactivity classification are the same as those used in
G.729 Annex B [5] and are: the full-band energy difference
∆Ef , the low-band energy difference ∆El, the zero-crossing

difference ∆ZC and the spectral distortion ∆S. The
matching phase is performed by a set of fuzzy rules obtained
automatically by means of a new hybrid learning tool [7]. As is
well known, a fuzzy system allows a gradual, continuous
transition rather a sharp change between two values. So, the
Fuzzy VAD proposed returns a continuous output ranging from 0
(Non Activity) to 1 (Activity), which does not depend on
whether the single inputs have exceeded a threshold or not, but
on an overall evaluation of the values they have assumed. The
FVAD translates several individual parameters into a single
continuous value which, in our case, indicates the degree of
membership in the Activity class and the complement of the
degree of membership in the Non Activity class. The final
decision is made by comparing the output of the fuzzy system,
which varies in a range between 0 and 1, with a fixed threshold
experimentally chosen by minimizing the sum of Front End



Clipping (FEC), Mid Speech Clipping (MSC), OVER, Noise
Detected as Speech (NDS) [8] and the standard deviation of the
MSC and NDS parameters. In this way we found an appropriate
value for the hangover module that satisfies the MSC and NDS
statistics, reducing the total error. The hangover mechanism
chosen is similar to that adopted by the GSM [6].

 2.1 Speech database

The speech database used to obtain the learning and testing
patterns contains sequences recorded in a non-noisy environment
(Clean sequences, SNR=60 dB), sampled at 8000 Hz  and linear
quantized at 16 bits per sample. It consists of 60 speech phrases
(in English and Italian) spoken by 36 native speakers, 18 males
and 18 females. The database was then subdivided into a learning
database and a testing database, which naturally contains
different phrases and speakers from the first one. The two
databases were marked manually as active and non-active speech
segments. In order to have satisfactory statistics as regards the
languages and the speakers, the male and female speakers and the
languages were equally distributed between the two databases.
Further, to respect the statistics of a normal telephone
conversation (about 40% of activity and 60% of non-activity), we
introduced random pause segments, extracting from an
exponential population the length of talkspurt  and silence
periods.
In order to evaluate the effects of changes in the speech level we
considered 3 different levels in the testing database: 12, 22, 32
dB Below Codec Overload (BCO), i.e. from the overload point
of 16 bit word length, whereas the effects of background noise on
VAD performance was tested  by adding various types of
stationary and non-stationary background noise (Car, White,
Traffic and Babble), made available by CSELT, to the clean
testing sequence at different signal-to-noise ratios (20, 10, 0 dB).
The learning database consists of only clean sequences, so the
trained fuzzy system used for the matching phase is independent
of any type of background noise.
To summarize, the learning database comprises clean speech
sequences at 22 dB below codec overload lasting about 4
minutes, whereas the testing database includes clean speech and
noisy sequences corresponding to about 342 minutes of signal,
divided in 57 files of 6 minutes each (6 types of superimposed
noise, white, car, street, restaurant, office and train noise, with 3
different SNRs and 3 different levels, plus 3 clean files at
different levels).

2.2 Fuzzy rules

After the training phase we obtained a knowledge base of only
six fuzzy rules. Figure 1 shows the six fuzzy rules the tool
extrapolated from the examples. In the rows we have the rules,
and in the first  four columns the four fuzzy system inputs. Each
of the fuzzy sets represented has the Universe of Discourse
corresponding to the relative input on the abscissa and the truth
values on the ordinates. The crisp value of the output singleton is
presented in the last column. More specifically, we say that 0 is
inactivity and 1 is activity. We adopted the Weighted Mean
defuzzification method which offers better results in
classification problem [7].

If we neglect very large fuzzy sets we can give a linguistic
representation of the six fuzzy rules:

Rule 1 : IF  (∆S is medium-low ) THEN  (Y is active)
Rule 2 : IF  (∆Ef is very high) THEN  (Y is inactive)
Rule 3 : IF  (∆El is low) AND (∆S is very low) AND (∆ZC is

high) THEN  (Y is active)
Rule 4 : IF  (∆El is low) AND (∆S is high) AND (∆ZC is

medium) THEN  (Y is active)
Rule 5 : IF  (∆El is high) AND (∆S is very low) AND (∆ZC

is low) THEN  (Y is active)
Rule 6 : IF  (∆El is high) AND (∆S is not low) AND (∆ZC is

very high) THEN  (Y is active)

Of course, the output of the fuzzy system, which  indicates the
degree of membership in the Activity/Inactivity classes. depends
on an overall evaluation of the input parameter values by means
the defuzzyfication process. For example, we have a high output
(i.e. the frame is detected as active) if ∆Εf is not high and ∆S is
medium-low, whereas we have a low output (i. e. the frame is
detected as inactive) if ∆S is medium and ∆Εf  is very high and
∆ZC is not high; in this last case, in fact, only the degree of truth
of rule 2 is high, while the degree of truth of the other rules is
low.
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2.3 Decision module

In order to establish an optimal threshold value with which to
compare the fuzzy system output, we analyzed the total
misclassification error with respect to a threshold value , Fth,

ranging between 0 and 1. The threshold was chosen in such a
way as to achieve a trade-off between the values of the four
parameters FEC+MSC+OVER+NDS. Although some of them
(specifically MSC and FEC) can be improved by introducing a
successive hangover mechanism, which delays the transitions
from 0 to 1, the presence of a hangover block makes the values of
the OVER and NDS parameters worse. The latter were therefore
given priority over  MSC and FEC in choosing the threshold.



The minimum total error is achieved with about Fth =0.21. We

chose Fth=0.25 , so as to reduce the value of OVER and NDS; as

mentioned previously, the corresponding increase in FEC and
MSC can be solved by introducing a hangover mechanism.  The
threshold Fth was also chosen so as to minimize the variance of

the parameters affected by the hangover: this then allows us to
design a suitable hangover for our VAD. We used a VAD
hangover to eliminate mid-burst clipping of low levels of speech.
The mechanism is similar to the one used by the GSM VAD.

3. EXPERIMENTAL RESULTS
In this Section we compare the performance of the ITU-T G.729
standard VAD, the Full Rate GSM VAD and the FVAD
proposed in this paper. All results were averaged on the six types
of background noise: white, car, street, restaurant, office and
train noise. The results were analyzed considering the percentage
of FEC and MSC in active voice frames, to calculate the amount
of clipping introduced, and the percentage of OVER and NDS in
non-active voice frames, to calculate the increase in activity.
Figs. 2 (a-b) show a performance comparison in the case of a
signal level of 22 dB below codec overload. Both in terms of
clipping introduced (FEC+MSC) and in terms of increase in
activity (OVER+NDS), the FVAD performs better than the
G.729 except in the clean case for which  performance is similar.
At SNR=10 dB, for example, we halved both misclassification
errors. We also observed that on average FVAD performance is
similar to that of the GSM VAD, which in turn performs better
than the ITU-T standard. In Figs. 2 (c-d) we compare
performance in the case of a signal level of 32 dB below codec
overload. The performance of  the FVAD and G.729 VAD is
substantially unchanged whereas we observed an improvement in
that of the GSM VAD in terms of the activity factor but a
deterioration in terms of clipping, above all with very high and
very low SNRs. Finally, Figs. 2 (e-f) show a comparison in the
case of a signal level of 12 dB below codec overload. In terms of
FEC+MSC, the FVAD still performs better than the G.729  (in
fact the performance is substantially unchanged  with respect to
the 22 dB BCO case), whereas we observed a slightly an
improvement in the GSM VAD performance in terms of clipping.
In terms of OVER+NDS the GSM VAD presents worse
performance when the SNR  is below 10 dB due to the high
signal level. We observed a deterioration in the performance of
both the FVAD and  the G.729 in the clean case, whereas below
SNR=20 dB FVAD performance is better than that of both the
G.729 and the GSM VAD.
A performance evaluation in terms of FEC+MSC+OVER+NDS
with varying types of background noise is shown in Fig. 3. The
FVAD results are always better than those of the G.729. More
specifically, we have a significant improvement in the case of
car, train and street noises. Further, for non-stationary
background noise, FVAD performance is also better than that of
the GSM VAD, whereas for stationary noise, performance is
similar except for the car noise case.
We also made comparisons considering several sequences of
modern and classical music, sampled at 8 kHz. More specifically,
we calculated the percentage of clipping introduced by the 3
different VADs. The results indicate that the GSM VAD

introduces about 5 % of clipping, the G.729 VAD 20 % and the
FVAD 14 %.
To evaluate the efficiency of new VAD in terms of perceived
speech quality and the effect on listeners of the clipping
introduced we carried out a series of listening tests. We used the
Comparison Category Rating method, in the same conditions
adopted in [9] extending the requirements about the SNR up to 0
dB. Fig 4 gives the results in terms of CMOS values, i.e. the
differences in MOS scores between the FVAD and the ITU-T
VAD. In average the FVAD presents similar performance than
the G.729 VAD. For car and office noise at SNR=0 dB FVAD
performs better of about 0.2 MOS scores.

4. CONCLUSION
In conclusion, we have presented a new voice activity detector
based on fuzzy logic. The new approach is more efficient than
the traditional threshold method since it exploits all the
information and the non-linearity in the input pattern of
parameters. The six fuzzy rules, on which the matching phase is
based, were obtained through a training phase performed by
means of a new hybrid learning tool, without any need for a
priori knowledge of the problem. The results obtained show a
clear improvement in fuzzy VAD performance as compared with
the traditional solution, with a negligible increase in complexity.
On average, FVAD allows an improvement of about 25 % in bit
rate reduction and of about 43 % in clipping reduction. Formal
listening tests, based on Comparison Category Rating method,
show also a slightly improvement in the perceived speech in
terms of clipping audibility above all with high level of
background noise.
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Fig. 2 (a-f) Clipping and increase of activity varying speech level
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Fig. 3 Results varying types of background noise
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Fig. 4 Comparison Mean Opinion Score varying acoustic
condition (a minus sign means that VAD proposed is worse than
the ITU-T VAD)

1 - Clean 8 - Traffic SNR = 10 dB
2 - Car  SNR =20 dB 9 - Office SNR = 10 dB
3 - Babble SNR = 20 dB 10 - Car SNR =0 dB
4 - Traffic SNR = 20 dB 11 - Babble SNR = 0 dB
5 - Office SNR = 20 dB 12 - Traffic SNR = 0 dB
6 - Car SNR =10 dB 13 - Office SNR = 0 dB
7 - Babble SNR = 10 dB 14 - Mean value

CMOS


