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ABSTRACT

Many blind adaptive beamforming algorithms require
the selection of one or more non-zero initial weight vectors.
Proper selection of the initial weight vectors can speed algo-
rithm convergence and help ensure convergence to the de-
sired solutions. Three alternative initialization approaches
are compared here, all of which depend only on second order
statistics of the observed data. These methods are based on
Gram-Schmidt orthogonalization, eigendecomposition, and
QR decomposition of the observed data covariance matrix.
We show through computer simulation that the eigende-
composition approach yields the best performance.

1. INTRODUCTION

The problem of separating multiple cochannel communi-
cation signals which are received at an antenna array has
received considerable interest. An important application is
in smart antennas for mobile wireless communications [1].
One approach for separating the received signals is through
blind adaptive beamforming. Blind adaptive algorithms
may be defined as those adaptive algorithms which do not
require the presence of a known training signal. In many
cases the use of a blind adaptive beamforming algorithm
requires the selection of a set of non-zero initial weight vec-
tors. Examples of algorithms which require non-zero initial
weight vectors include those based on constant modulus
properties (e.g., [2, 3, 4, 5, 6, 7]) and those based on finite
alphabet properties (e.g., [8, 9]). Proper selection of the
initial weight vectors is crucial since improper selection can
slow or prevent algorithm convergence.

One possible approach for selecting the initial weight
vectors is to perform angle of arrival (AOA) estimation,
and use this information to form the initial weight vec-
tors. However, this process is computationally intensive,
and requires that the antenna array response be known or
experimentally calibrated. Array calibration is in practice
very difficult to obtain and maintain. One of the main ad-
vantages of blind adaptive beamforming is that it does not
require AOA information. For these reasons we do not con-
sider initialization schemes which require AOA estimation
or knowledge of the array response.
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The initial weight vectors considered here are derived
directly from the sample covariance matrix of the observed
data. Since these weight vectors do not depend on any prop-
erties of the received signals, such as modulation format,
they can be used in many different adaptive algorithms.
The initialization methods considered here are based on

1) Gram-Schmidt orthogonalization,
2) Eigendecompositon,
3) QR decomposition.

All of these methods yield orthogonal, or nearly orthogonal,
output signals. This helps to ensure that independent solu-
tions are found by each beamformer weight vector. These
methods are described in more detail in the following sec-
tions. Following this desciption, the results of Monte Carlo
simulations are presented to compare performance. Perfor-
mance is examined both as a function of power spread and
angular spread of the received signals.

2. GRAM-SCHMIDT INITIALIZATION

This approach uses a standard Gram-Schmidt algorithm to
generate a set of weight vectors which orthogonalize the
data. These weight vectors are then used as the initial
weight vectors for the adaptive algorithm. It should be
noted that this set of weight vectors is not unique.

Suppose that we wish to generate a set of L weight
vectors that will orthogonalize the received data by using
a Gram-Schmidt procedure. Denote the set of L initial
weight vectors by the M × L matrix W, where M is the
number of elements in the array. As a first step we set the
main diagonal of W equal to L ones, while the remainder
of W is set to zeros. That is, the first column of W is
set to w1 = [1 0 0 · · · 0 ]T , the second column is set to

w2 = [0 1 0 · · · 0 ]T , etc. The first Gram-Schmidt weight
vector, which we will denote by ŵ1, is equal to w1. The
second Gram-Schmidt weight vector ŵ2 is found by

ŵ2 = w2 − α1,2ŵ1 (1)

where

αi,j =
ŵH
i Rxxwj

ŵH
i Rxxŵi

(2)



    

and Rxx is the observed data sample covariance matrix. In
general, the kth Gram-Schmidt weight vector is given by

ŵk = wk −
k−1∑
i=1

αi,kŵi. (3)

One advantage of the Gram-Schmidt approach over the
eigen- or QR-decomposition approaches is lower computa-
tional complexity.

3. EIGENVECTOR AND QR INITIALIZATION

The eigenvector initialization uses the L most dominant
eigenvectors of the observed data covariance matrix as the
L initial weight vectors. We first show that an optimal
beamformer weight vector lies in the signal subspace of the
observed data covariance matrix. The weight vector wopt

that extracts a desired signal with maximum output Signal
to Interference and Noise Ratio (SINR) is given by

wopt ∝ R-1
xxa, (4)

where a is the array response vector of the desired signal
and Rxx is the observed data correlation matrix. In the
case where the background noise is white, and there are
fewer incident signals L than sensors M , the observed data
correlation matrix may be expressed as

Rxx = USΣSUH
S + σNUNUH

N (5)

where US is an M × L matrix of signal subspace eigenvec-
tors, ΣS is an L × L diagonal matrix of the correspond-
ing eigenvalues, UN is an M × (M − L) matrix of signal
nullspace eigenvectors, and σN is the power of the back-
ground noise. Since the steering vector a lies in the signal
subspace, UH

Na = 0, which in turn implies

R-1
xxa = (USΣ-1

S UH
S +

1

σN
UNUH

N)a (6)

= USΣ-1
S UH

S a (7)

Since we know that the adaptive weight vectors will lie in
the signal subspace upon convergence, it makes sense for
the initial weight vectors to lie in the signal subspace.

Another motivation is that the eigenvectors themselves
can be very good beamformer weight vectors under some
circumstances. In particular, as the power spread between
the received signals increases, the eigenvectors become bet-
ter beamformer weight vectors. This behavior can be ex-
plained as follows. Consider an environment with two inci-
dent signals, with one signal much stronger than the other.
The dominant eigenvector, which by definition is the beam-
former weight vector that maximizes the output power, will
be very similar to the steering vector of the stronger sig-
nal. Thus the output of the first eigen-beamformer will be
dominated by the stronger signal. The second most dom-
inant eigenvector maximizes the output power subject to
the constraint that the output is orthogonal to the first out-
put. Thus the second eigenvector will extract the weaker
signal with fairly high output SINR. As the power spread
becomes higher, the second eigenvector will yield higher
output SINR. The eigenvectors also become better weight

vectors as the angular separation increases. Other work
on the performance of eigenvectors as beamformer weight
vectors has been presented in [10]. A related area is the
well established use of eigenvectors as an orthogonalizing
pre-processor for adaptive beamforming [11].

If the number of incident signals is less than the number
of elements, some of the weight vectors will lie in the signal
nullspace. For this reason it is important to consider what
happens if we use a signal nullspace eigenvector as an initial
weight vector. A nullspace eigenvector will null all of the
incident signals, so that the beamformer output contains
only background noise. If a CMA is used to adapt the
weight vector, the algorithm may stay in this noise capture
state indefinitely. The noise capture properties of CMA
have been examined by several authors [12, 13]. It has been
shown that noise capture corresponds to a saddlepoint in
the CMA cost function.

The QR initialization is based on a QR decomposition
of the observed data covariance matrix. Using this decom-
position the covariance matrix can be expressed as

Rxx = QR (8)

where the matrix R is upper triangular and the matrix Q
is orthonormal. The columns of Q are used as the initial
weight vectors. Since Q does not orthogonalize the data,
we expect the performance to be worse than the eigenvector
initialization. However, the columns of Q are sometimes
very similar to the eigenvectors of Rxx, so the behavior of
the QR and eigendecomposition methods may be similar.

4. OVERVIEW OF LSCMA

We now give a brief overview of the Least Squares Constant
Modulus Algorithm (LSCMA) [2], which we use to compare
the different initialization schemes. This algorithm extracts
one incident signal. It will typically extract the strongest
constant modulus signal received by the array if the initial
weight vector is omnidirectional.

Let the M×1 complex vector x(n) represent the signals
and noise received at an array of M antennas. We denote
the initial weight vector by w0, where we have changed
notation so that the subscript ‘i’ on wi now denotes the
iteration number of the algorithm. Given N samples of
observed data, an initial signal estimate is formed using the
initial weight vector via

y0(n) = wH
0 x(n). (9)

The initial signal estimate is then hard limited to yield

d0(n) =
y0(n)

|y0(n)| . (10)

A new weight vector is formed according to

w1 = R-1
xxrxd (11)

where Rxx =
〈

x(n) xH(n)
〉
, rxd = 〈x(n) d∗0(n) 〉, and 〈 · 〉

denotes a time average over 0 ≤ n ≤ N − 1. The iteration
described by (9),(10), and (11) is then repeated with w0

replaced by w1. This process is continued until either the
change in the weight vector is smaller than some threshold,



   

Initial SINR (dB)
∆σ2 (dB) GSO QR Eigen.

0 -2.6 0.0 -0.1
0.1 -2.5 0.1 0.2
0.25 -2.4 0.2 0.6
0.5 -2.1 0.4 1.3
1. -1.7 1.0 2.5
2. -0.8 1.9 4.9
3. 0.1 2.9 7.1
6. 2.3 5.9 12.0
9. 4.0 8.8 15.6

Table 1: Expected value of initial output SINR for the
weaker signal as a function of power spread.

or until the envelope variance of the output signal is deemed
sufficiently small. The convergence rate of this algorithm is
investigated in [3, 4].

5. SIMULATION RESULTS

We now present the results of computer simulations to
compare the relative performance of the different initial-
ization strategies. For all simulations we use an 8 element
uniform linear array with λ/2 spacing. The incident signals
are FM with independent random low-pass Gaussian mod-
ulating waveforms. All incident signals have the same car-
rier offset of zero. The background noise is temporally and
spatially white with complex Gaussian distribution. The
power of the received signals is measured relative to the
background noise and is expressed in terms of the Signal to
White Noise Ratio (SWNR).

Before we present results from Monte Carlo simulations,
it is important to examine the expected initial SINR of each
approach. The expected initial SINR can be easily calcu-
lated by generating the ideal, i.e., infinite collect time, co-
variance matrix. We will first consider the initial SINR
versus power spread. The environment contains two sig-
nals, with one signal incident from 0◦ (broadside), and the
second signal incident from 10◦. The SWNR of the sec-
ond signal is fixed at 15 dB. The SWNR of the first signal
is varied from 15 dB to 24 dB. Table 1 compares the out-
put SINR achieved for the second (weaker) signal with the
different initial weight vectors. The output SINR of the
stronger signal is always higher than for the weaker signal.
All three methods show increasing output SINR with in-
creasing power spread. The eigenvector approach has the
highest overall output SINR. If the power spread is 3 dB,
the output SINR is quite high at 7.1 dB. The GSO approach
has the lowest output SINR, being negative until the power
separation reaches 3 dB. The QR method performs some-
what worse than the eigenvector method, as expected.

Table 2 compares the initial SINR versus angular spread.
The environment again contains two incident signals, with
the AOA of the first signal fixed at 0◦ with 16 dB SWNR.
The AOA of second signal is varied from 0◦ to 30◦ while
the SWNR is fixed at 15 dB SWNR. Note that the power
spread is fixed at 1 dB. Results are again shown for the
weaker signal. When the signals have the same AOA, the

Optimal Initial SINR (dB)
∆θ SINR (dB) GSO QR Eigen.

0◦ -1.0 -25.2 -25.1 −∞
1◦ 6.8 -17.5 -8.8 -2.0
2◦ 12.1 -12.2 -0.6 0.0
3◦ 15.4 -9.1 0.5 0.6
5◦ 19.3 -5.4 0.8 1.0
10◦ 23.4 -1.7 1.0 2.5
20◦ 23.8 0.1 1.0 4.2
30◦ 24.0 0.6 1.0 24.0

Table 2: Expected value of initial output SINR for the
weaker signal as a function of angular separation.

eigenvector method yields an output SINR of 0, or −∞ dB,
since the second most dominant eigenvector is orthogonal to
the steering vector of the incident signals. However, even at
very small angular separation the eigenvector method yields
dramatically higher initial SINR than the GSO method.
Once again, the QR method performs slightly worse than
the eigenvector method.

While it is important to examine the initial output SINR,
the results presented so far do not include the effects of fi-
nite collect time. In addition, the initial output SINR is
not sufficient to determine the solutions that LSCMA will
converge to, particularly for low initial SINR. The follow-
ing approach is used to determine the effectiveness of each
initialization strategy. The goal is to extract all the inci-
dent signals. We first generate a realization of the received
data. We then compute a set of initial weight vectors, which
is dependent on the sample covariance matrix of the data.
The number of initial weight vectors is equal to the number
of incident signals. For all LSCMA simulations we use a
block size of 100 samples. The LSCMA is then applied to
the same data using these different initial weight vectors.
Each set of LSCMA iterations is run independently, and no
attempt is made to force each weight vector to a different
solution. After 20 iterations, which is more than sufficient
for LSCMA to converge, the solutions found are compared.
If different solutions have been found, then the initializa-
tion has performed correctly. This procedure is repeated
for each different initialization method for 1000 indepen-
dent trials.

We first consider performance versus power spread. The
environment is identical to the environment used to obtain
the results in Table 1. The results in Table 3 show the
likelihood that LSCMA will extract both signals, i.e., that
the LSCMA weight vectors will converge to different solu-
tions. As can be seen, the eigenvector method performs
very well. It causes LSCMA to converge to the two de-
sired solutions with as little as 0.5 dB of power separation.
Consulting Table 1, we see that the expected initial output
SINR of the eigenvector is just 1.3 dB, but this is sufficient
to ensure that the second LSCMA weight vector extracts
the weaker signal. The QR method performs only slightly
worse than the eigendecomposition method, while the GSO
method performs poorly in comparison.

Similar conclusions can be drawn from examining the



    

∆σ2 (dB) GSO QR Eigen.

0 .542 .685 0.653
0.1 .555 .707 0.820
0.25 .564 .870 0.981
0.5 .654 .982 1.
1 .766 1. 1.
2 .921 1. 1.
3 .970 1. 1.

Table 3: Fraction of trials in which LSCMA weight vectors
extracted different signals versus received power difference.

∆θ GSO QR Eigen.

1◦ .491 .528 .739
2◦ .510 .839 .935
3◦ .527 .958 .981
4◦ .590 .997 .997
5◦ .615 1. 0.999
10◦ .766 1. 1.

Table 4: Fraction of trials in which LSCMA weight vectors
extracted different signals versus angular separation.

likelihood of LSCMA convergence as a function of angular
separation. The signal environment is identical to that used
in Table 2. The eigenvector method performs best overall,
and the QR method performs almost as well. The GSO
method does not perform well.

Because of space limitations, results obtained in other
signal environments can not be included here. However,
we have observed that in the three signal environment the
power spread must be on the order of 6 dB for the eigen-
vector method to cause LSCMA to extract all three signals.
This is a much larger required power spread than in the
two signal environment. Both the QR and GSO methods
perform much worse than the eigenvector method in the
three signal environment. This indicates that the eigenvec-
tor method should be the preferred choice.

6. CONCLUSIONS

We have compared the performance of several different ini-
tialization techniques for blind adaptive beamforming. The
results of Monte Carlo simulation indicate that the dom-
inant eigenvectors of the observed data covariance matrix
yield good initial weight vectors. The eigenvectors encour-
age the algorithm to extract all the incident signals because
these weights orthogonalize the data, and because the eigen-
vectors yield reasonable initial SINR in many cases.

The problem of initialization of blind adaptive equaliz-
ers is not considered here, but the eigenvector initialization
might prove useful for this problem. Currently it is common
to initialize a blind equalizer by setting the so-called ‘center-
tap’ equal to a constant, while leaving the other taps set to
zero. It is possible that eigenvector initialization may speed

blind equalizer convergence, but the added computational
complexity may not be warranted.
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