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ABSTRACT

In this paper we present a new robust adaptive algorithm. It is

derived from the standard QR Decomposition based RLS (QRD-

RLS) algorithm by introducing a non-orthogonal transform into

the update recursion. Instead of updating an upper triangular ma-

trix, as it is the case for the QRD-RLS, we adapt an upper triangu-

lar block diagonal matrix. The complexity of the algorithm, thus

obtained, varies from O
�
N2
�
to O (N) when the size of the di-

agonal blocks decreases. Simulations of the new algorithm have

shown a better robustness than the standard QRD-based algorithm

in the context of multichannel adaptive �ltering with highly inter-

correlated channels.

1. INTRODUCTION

Recursive least squares (RLS) adaptive algorithm is well known

for its invariably fast convergence compared to the LMS class al-

gorithms which convergence properties are very sensitive to input

correlation. However, this advantage of RLS over LMS is obtained

at the expense of a lower robustness and a higher complexity. In-

deed, the classical RLS algorithm (or the pseudo-inverse based al-

gorithm) has poor numerical properties and a high complexity of

O
�
N2
�
. Fast versions of the RLS class (FTF, FAEST) are derived

for adaptive �ltering by exploiting the input vector shift invariance

structure, resulting in a reduced complexity of order O (N). Un-
fortunaly, these versions suffer from serious numerical problems

due to error roundoff accumulation.

A more robust version of the RLS adaptive algorithm was the

QRD-RLS algorithm. It was introduced �rst by Gentleman and

Kung [5] then promoted by the works of McWhirter [8] and Ciof�

[3][4]. Since then, it has received a particular attention over the

last decade. This can be attributed essentially to two aspects of the

algorithm:

� it has good numerical properties, due to the use of the robust

QR decomposition involving the Givens or Householder

transformations;

� it is suitable for systolic array implementationwhich makes

it interesting for real time applications on VLSI circuits.

We start this paper by presenting the QRD-RLS algorithm for

the general context of adaptive parameter estimation. Then we

derive a new algorithm, called 2-block-diagonal algorithm, by re-

ducing the transformed input data matrix to be 2-block-diagonal.

This algorithm is then generalized to a p-block-diagonal one. Fi-

nally, simulations show the algorithm performances in the context

of multichannel adaptive �ltering.

2. QRD-RLS ADAPTIVE ALGORITHM

In this section we recall the QRD-RLS. Consider an adaptive pa-

rameter estimation setup where the signal reference d (n) is de-
scribed as

d (n) = x
T (n)wop + v (n)

where xT (n) = (x1 (n) ; x2 (n) ; : : : ; xN (n)) is the input vector,
wop is theN -dimension unknown parameter vector and v (n) is a
white noise perturbation.

This is a general model, which includes the multichannel adap-

tive �ltering.

The output error vector is given by

e (n) = d (n)�X (n)w (n)

where w (n) is theN -dimension adaptive parameter vector,

X (n) = (x1 (n) ;x2 (n) ; : : : ;xN (n)) =

0
B@

xT (n)
...

xT (0)

1
CA

with xTi (n) = (xi (n) ; : : : ; xi (0)) i = 1; : : : ; N and

dT (n) = (d (n) ; : : : ; d (0)). Let � (n) = diag (1; �; : : : ; �n)
and de�ne

d� (n)
4
= � (n)d (n) =

�
d (n)

�d� (n� 1) ;

�

X� (n)
4
= � (n)X (n) =

�
xT (n)

�X� (n� 1)

�
(1)

and e� (n)
4
= � (n) e (n) = d� (n)�X� (n)w (n).

Then, the least squares parameter estimation problem is the mini-

mization problem:

min
w(n)

[� (n)] (2)

where

� (n) = ke� (n)k
2 =



QT (n) e� (n)


2 (3)

for any ((n+ 1)� (n+ 1)) orthogonalmatrixQ (n). Let choose
Q (n) such that the transformed vector �X (n) ofX� (n) is as fol-
low

�X (n) = Q
T (n)X� (n) =

�



R (n)

�
n � N � 1

whereR (n) is an (N �N) upper triangularmatrix. Accordingly,

the vector d� (n) is transformed byQT (n) into

�d (n) = Q
T (n)d� (n) =

�
�de (n)
�dw (n)

�
n � N � 1



where �dw (n) is a N -dimension vector. The error norm in equa-

tion (3) then reads as

� (n) =






�

�de (n)
�dw (n)�R (n)w (n)

�




2

n � N � 1

Since �de (n) is independent of w (n), the solution of the least

squares problem is obtained by annulling the second block:

R (n)w (n) = �d
w (n) n � N � 1 (4)

The inversion of the matrix R (n) at time n has a complex-

ity ofO
�
N2
�
while its computation may be achieved recursively,

fromR (n� 1) withO
�
N2
�
complexity.

Due to the input matrix structure given by (1), we can write

�



R (n)

�
= Q

u (n)

 
xT (n)



�R (n� 1)

!
n � N (5)

withQu (n) = QT (n)

�
1 0T

0 Q (n� 1)

�
It comes that the updation of R (n� 1) begins by adding a

new row to the transformed input matrix, then zeroing this row by

mean of the orthogonal transform Qu (n) to obtain the updated

R (n) matrix. The matrix Qu (n) is composed of N rotations

(Givens) or re�ections (Householder) [6]

The updation matrixQu (n) is also used to compute �d (n)

�d (n) =

�
�de (n)
�dw (n)

�
= Q

u (n)

 
d (n)

��de (n� 1)
��dw (n� 1)

!
n � N

(6)

The overall updation step has a complexity of O
�
N2
�
. Since the

n �N rows ( from second to (n�N + 1)th) are not affected by

theQu (n) matrix, one may use a reduced ((N + 1)� (N + 1))
orthogonal matrixQv (n) to update the following quantities :�

0T

R (n)

�
= Q

v (n)

�
xT (n)

�R (n� 1)

�
(7)�

�de1 (n)
�dw (n)

�
= Q

v (n)

�
d (n)

��dw (n� 1)

�
; n � N

Finally, the QRD-RLS algorithm with a soft-constrained ini-

tialization scheme is summarized by

1- Initialization

R (�1) = �IN
�dw (�1) = �w (�1)

for n = 0 : L

2-

�
0T

R (n)

�
= Qv (n)

�
xT (n)

�R (n� 1)

�
�

�de1 (n)
�dw (n)

�
= Qv (n)

�
d (n)

��dw (n� 1)

�
3- w (n) = R�1 (n) �dw (n)
4- e (n) = d (n)� xT (n)w (n)

3. A NEWQRD-BASED ADAPTIVE ALGORITHM

In this sectionwe propose a new 2-block-diagonalalgorithm,which

will be extended later to a general p-block-diagonalalgorithm(1 �
p � N ). In order to make easier the presentation of the new al-

gorithm, we maintain the same names for the variables involved in

the QRD-RLS.

3.1. The 2-block-diagonal Algorithm

The main idea of our algorithm is to introduce a regularizing (non-

orthogonal) transform to a QRD-RLS like updation scheme. The

triangular matrixR (n) is partitioned into four blocks

R (n) =

�
R1 (n) B12 (n)

 R2 (n)

�
; N = N1 +N2

where R1 (n) (respectively R2 (n)) is a N1 � N1 (respectively

N2 � N2 ) upper triangular matrix , and B12 (n) is a N1 � N2

matrix. The updation equations of the algorithm are very similar

to those of the QRD-RLS. We start by the computation of the para-

meter vectorw (n) solution ofR (n)w (n) = �dw (n). Then this

equation is transformed via a non orthogonal transform into

R
0(n)w(n) = �d

w0(n): (8)

R0(n) and �dw0(n) are then used in the update equations similarly

to the QRD-RLS update equation�
0T

R (n+ 1)

�
= Q

v (n)

�
xT (n+ 1)
�R0 (n)

�
�

�de1 (n + 1)
�dw (n+ 1)

�
= Q

v (n)

�
d (n+ 1)
��dw0 (n)

�
The transformation from (4) to (8) aims to reduce the matrixR (n)
to its block-diagonal submatrix. The extra-diagonal blockB12 (n)
is moved to the right hand side of equation (4):

R
0 (n) =

�
R1 (n) 


 R2 (n)

�

�d
w0 (n) = �d

w (n)�

�

 B12 (n)

 


�
w (n)

The overall algorithmusing a soft-constrained initializationscheme

is summarized by

1- Initialization

R0 (�1) = �IN
�dw0 (�1) = �w (�1)

for n = 0 : L

2-

�
0T

R (n)

�
= Qv (n)

�
xT (n)

�R0 (n� 1)

�

R (n) =

�
R1 (n) B12 (n)

 R2 (n)

�
�

�de1 (n)
�dw (n)

�
= Qv (n)

�
d (n)
��dw0 (n� 1)

�
3- w (n) = R�1 (n) �dw (n)

4- R0 (n) =

�
R1 (n) 


 R2 (n)

�
�dw0 (n) = �dw (n)�

�

 B12 (n)

 


�
w (n)

5- e (n) = d (n)� xT (n)w (n)



One can show that the submatrixB12 (n) is a rank one matrix

, which does not need to be explicitly computed in step 2. There-

fore, the computation of �dw0(n) has a complexity ofO(N). Thus,
step 3 can be computed in conjuction with step 4, with a lower

complexity than the corresponding steps in the QRD-RLS algo-

rithm which implies a gain for the global complexity as compared

to the QRD-RLS. Thus, steps 3 and 4 are replaced by the equiva-

lent step 3':

w2(n) = R
�1
2 (n)�dw2 (n)

�d
w0
1 (n) = �d

w
1 (n)�B12(n)w2(n)

w1(n) = R
�1
1 (n)�dw01 (n)

�d
w0 (n) =

�
�dw01 (n)
�dw2 (n)

�
; w (n) =

�
w1(n)
w2(n)

�

Indeed, if we denote by cQR(N) = O(N2) the complexity of

the QRD-RLS, then the complexity [2] of our algorithm, denoted

cALG is

cALG (N1; N2) = cQR (N1) + cQR (N2) +O (N)

It follows that

cALG (N1; N2) < cQR (N1 +N2) (9)

Moreover, it is shown in [2] that the transformation of the step 4

from (4) to (8) improves the conditioning of the system. Conse-

quently, our algorithm can be seen as a preconditioned iterative

algorithm.

3.2. The p-block-diagonal Algorithm

In the previous subsection we have presented the 2-block-diagonal

algorithm, based on a 2 � 2-block partitionning of the triangular

matrix R (n). The algorithm is then characterized by the couple

(N1; N2) of the sizes of the 2 triangular submatrices R1 (n) and
R2 (n). We now show that this can be extended to a general par-

tition of the block diagonal ofR (n) into p triangular (Nk �Nk)
submatricesRk (n) (1 � k � p),

so thatR (n) has the following form (1 � p � N)0
BBBB@

R1 (n) B1p (n)
R2 (n) B2p (n)

. . .

Rp�1 (n) Bp�1;p (n)

 Rp (n)

1
CCCCA

This de�nes a larger class of algorithms. The corresponding al-

gorithm will be characterized by the p-uplet (N1; N2; : : : ; Np) of
the sizes of the p diagonal blocks of R (n). We will refer to this

algorithm as the (N1; N2; : : : ; Np)-algorithm .

The 2-block-diagonal algorithm is extended to the p-block-

diagonal one by replacing the update equations (step 3), by

R
0 (n) =

0
@ R1 (n) 


. . .


 Rp (n)

1
A (10)

�d
w0 (n) = �d

w (n)�B (n)w (n)

withB (n) =

0
BB@


 B1p (n)
...

Bp�1;p (n)

 


1
CCA

Under this general formulation, we notice that the 1-block-

diagonal algorithm is the QRD-RLS algorithm and the N -block-

diagonal algorithm is the fast QR algorithm presented by Liu [7].

It can be shown that the productB (n)w (n) requires a complex-

ity of O (N). Then, for similar reasons as those for 2-block-

diagonal algorithm (for more details see [2]), the complexity of

the (N1; N2; : : : ; Np)-algorithm is

cALG (N1; : : : ; Np) = cQR (N1) + : : :+ cQR (Np) +O (N)

The lowest complexity, equal toO (N), is reached for p = N (the

(1,1,: : :,1)-algorithm corresponding to Liu's algorithm), whereas

the highest complexity is for p = N (QRD-RLS)

The orthogonal transform of step 2 can be realized by using

either Givens or Householder transformations. In the following

section, we have only simulated the Householder algorithm ver-

sion.

Another algorithm class, using a similar matrix reduction ap-

proach and more suited to fast implementation , is presented in [1],

it has a reduced complexity of O (N).

4. SIMULATIONS

This section presents some examples of the behaviour of the pro-

posed algorithm in a 2-channel adaptive �ltering context, through

100 runs Monte Carlo simulations. The two channels are repre-

sented by two tap �lters of length 6 and 4, respectively. Accord-

ingly, the input vector is of the form

x
T (n) = (x1 (n) ; : : : ; x1 (n� 5) ; x2 (n) ; : : : ; x2 (n� 3)) ;

where x1(n) and x2(n) are the channels input samples. The per-

formance of our algorithm is compared below to that of the LMS,

the QRD-RLS and Liu's algorithm. At time n = 300 the two

channels initial parameters are switched to another set of parame-

ters. This allows us to see the behaviour of the algorithms in a

tracking situation.

Figure 1 compares our (6,4)-algorithm with Liu's algorithm,

in the case of two input colored noise x1(n) and x2 (n) highly

intercorrelated with an output SNR of 40dB. We note that our al-

gorithm converges faster than the Liu's algorithm.

In �gures 2 and 3, we compare the ability of the LMS, the

QRD-RLS and our algorithm to identify the two channels when

the input covariance matrix is (nearly) rank de�cient. For this, the

channels input signals x1 (n) and x2 (n) are two coloured noises

with a very high intercorrelation.

The output mean square error (MSE) is plotted in �gure 2 v.s.

the number of iterations (time). The overall outputMSE decreases

for each algorithm (with very slow convergence for the LMS).

However, although the QRD-RLS exhibits the fastest decrease for

the output MSE, the observation of �gure 3 (which represents the

normalized parameter vector deviation
kw(n)�wopk

kwopk
), shows that

the corresponding�lter is not BIBO (Bounded InputBoundedOut-

put) stable. This is due to the rank de�ciency of the input vector

covariance matrix. On the other hand, our algorithm is, as for the

LMS, insensitive to such a rank de�ciency case.



5. CONCLUSION

We have proposed a class of algorithms derived from the QRD-

RLS algorithm, these algorithms inherit the fast convergence prop-

erty of the RLS algorithms. This class is well suited for multichan-

nel adaptive �ltering, as in stereophonic acoustic echo cancella-

tion, where degenerency situations (rank de�ciency of the input

covariance matrix due to highly cross-correlated input channels)

are often encountered. This class extends the algorithm presented

by Liu (see [7]). Not only, it preserves Liu's algorithm insensi-

tiveness to the above mentioned degenerency, but it also converges

faster. The complexity of this new class ranges between that of [7]

and that of QRD-RLS algorithm.
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Figure 1: MSE vs. time for (6,4)- and (1,1,..,1)-algorithm

0 100 200 300 400 500 600
−50

−40

−30

−20

−10

0

10

20

(6,4)−algorithm (0.85)

LMS                   

QRD−RLS (0.97)        

QRD−RLS (0.85)        

Figure 2: MSE vs. time for QRD-RLS, LMS and (6,4)-algorithm
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Figure 3: normalized parameter vector deviation vs. time for

QRD-RLS, LMS and (6,4)-algorithm


