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ABSTRACT

In this paper, a novelH1 approach is proposed for track-
ing of polarized co-channel sources using an array of tripole
antennas. The proposed approach partitions the observation
data matrix into two sub-matrices that are used, in conjunc-
tion with a new state-space model, to provide anH1-type
recursive estimation of alinear combiner. The linear com-
biner then provide estimates of the noise and signal sub-
spaces, from which the directions of the incident signals
can be estimated and tracked. The proposed technique is
also capable of handling the tracking ofappearing / dis-
appearingsources during the observation interval and, fur-
thermore, can accommodate array modeling uncertainties.
The difficult problem of tracking the crossing sources can
be successfully handled by using diversely polarized array.

1. INTRODUCTION

Most modern high-resolution direction-of-arrival (DOA) es-
timation techniques extract information from a subspace of
the covariance or data matrix associated with a received sig-
nal vector. However, major assumptions associated with
these techniques are stationary environment and complete
knowledge of the received signal model (i.e., its array man-
ifold and statistical information about the noise signal).
To handle a non-stationary environment, which is the case
when the sources move, or appear or disappear during the
observation, a number of adaptive algorithms for subspace
tracking have been developed ( [1], [2], and the references
therein). These methods provide updates to subspaces at
every step of the subspace tracking procedure so that sub-
space parameter extraction methods such as MUSIC can be
used in conjunction with these methods to track the mov-
ing sources. However, none of these techniques address the
array-uncertainty problem, which still persists, significantly
degrading the performance of the subspace-based direction-
finding (DF) algorithms and also these methods are suitable
only for slowly-varying DOAs. There is, therefore, con-
siderable practical interest in the development of tracking
algorithms that can operate in the presence of array uncer-
tainties, rapidly changing DOAs, crossing sources, appear-

ance / disappearance of sources during observation periods,
and furthermore, which are less computationally intensive.

The goal of this paper is to outline the use of theH1

criterion in the design of robust multi-source tracking algo-
rithm to deal with the problems mentioned in the previous
paragraph. The idea of applyingH1 estimation techniques
to these problems is motivated by the fact that theH1 es-
timation is robust and less sensitive to parameter variations,
to model uncertainties, and to the lack of statistical informa-
tion on the noise signal. Furthermore, by using the tripole
antenna array we can discriminate multiple sources with re-
spect to their direction and polarization. This property mo-
tivated us to use the tripole antenna array to handle tracking
of crossing sources.

The paper is organized as follows. In Section-2, the
modeling of the received signal for tripole antenna array
is given. In Section-3, a new state-space model for the re-
ceived signal is proposed, which is then placed in the frame-
work of anH1 approach. In Section-4, theH1 multi-
source tracking algorithms is proposed while in Section 5,
representative examples are presented. Finally, in Section
6, some concluding remarks are given.

2. MODELING THE ARRAY SIGNAL

The signal-vectorx(t), received by an array ofN tripole
antenna operating in the presence ofM polarized narrow-
band sources, can be modeled as follows:

x(t) = Am(t) + n(t); (1)

wherem(t) is the message vector-signal andn(t) represents
the additive white Gaussian noise. In equation (1),A is
3N�M complex matrix with itsith columna(�i; �i; 
i; �i)
defined as(Di�i)
 exp(�jrT ki), where
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r is the array location matrix and,
 denotes Kronecker
product. Note that, the source is described by its four pa-



rameters azimuth�i, elevation�i, orientation
i and ellip-
ticity �. The complex vector�i represents the source po-
larization, andDi is an orthogonal matrix which transforms
the source polarization coordinate system to array coordi-
nate system. Note that, a tripole is sensitive to three di-
mensional components of the electric filed and can be used
to exploit both DOA and polarization domain, that is, the
tripole antenna array can discriminate multiple sources with
respect to their direction and polarization.

It is assumed that the matrixA is of full rankM , that is,
M rows ofA are linearly independent and hence the other
rows can be expressed as a linear combination of theseM

rows. Hereafter, the firstM rows are assumed to be linearly
independent and the received signal vectorx is partitioned
as follows: �

x1
x2

�
=

�
A1

A2

�
m+

�
n1
n2

�
: (2)

whereA1 2 CM�M andA2 2 C(3N�M)�M . The linear
combinerL 2 CM�(3N�M) is defined as:

LHA1 = A2 or
�
LH � IN�M

� � A1

A2

�
= THA = 0

(3)
whereI(3N�M) and0(3N�M)�M are the identity and the
null matrices, respectively, andT 2 C3N�(3N�M). Equa-
tion (3) implies that the steering vectorsa( 

i
) are orthog-

onal to the columns ofT, where 
i
= [�i; �i; 
i; �i]

T .
This means that the subspace spanned by the columns of
the matrixT, spanf T g, is included in spanf En g, where
En is noise subspace, i.e, the eigenvectors associated with
the smallest eigenvalues of the data covariance matrixRxx.
Now, sinceT contains the blockI3N�M , its 3N � M

columns are linearly independent, therefore,

spanfTg = spanfEng: (4)

It follows that the linear combiner defines the noise sub-
space. Note that, in contrast to the basis defined byEn,
the basis defined by the columns ofT is not orthonormal.
However, the result of applying Householder transforms to
T will enable us to find an orthonormal basis forT and an
orthonormal basis for its orthonormal complement, which
is the signal subspace,Es. Furthermore, it is shown in [3]
that the following MUSIC-like function can be defined to
estimate the DOAs

FLC = �min

��
aHx ( )
aHy ( )

�
TTH

�
ax( ) ay( )

��
; (5)

where ax( ) and ay( ) are two steering vectors corre-
sponding to distinct polarizations and�min(�) is the min-
imum eigenvalue of(�). In this investigation, equation-(2)
will be used as the starting point to arrive an alternative
modeling and then to propose a new approach for improving
the performance of multi-source tracking algorithm operat-
ing in the presence of array uncertainties.

3. THE H1 APPROACH

TheH1 estimation methods can be seen as a powerful and
robust solution to handle parameter variations, array uncer-
tainties and noise effects with limited statistical informa-
tion. The idea is to come up with estimators that minimize
(or in the suboptimal case, bound) the maximum energy
gain from the disturbances to the estimation errors [4]. This
will guarantee that if the disturbances are small (in energy)
then the estimation errors will be as small as possible (in en-
ergy), no matter what the disturbances are. The robustness
of theH1 estimators follows from this fact.

To applyH1 estimation techniques to array signal pro-
cessing, a new state-space model for the received signal of
a general array of sensors is developed. Using equations (2)
and (3), thex2 portion of the received signal can be written
as,

x2 = LHx1 + (n2 � L
Hn1): (6)

It can be shown that thex2 portion of the received signal
vector at a particular timej obeys the following state-space
model: �

Lj+1 = Lj +�Lj ; j 2 [1;K]
x2;j = LHj x1;j + vj

(7)

wherevj = (n2;j �L
H
j n1;j) may include model uncertain-

ties and�Lj represents the time variation in the state ma-
trix. As it is unknown, we shall consider it as a disturbance.
In state-space terminology, the vectorvj is themeasurement
noisewhile the matrixLj is the state matrix.

By using the above state space model, the objective
is to estimate the unknown state matrix. LetL̂j =
F(x2;1; : : : ; x2;j�1) denote the estimate ofLj given the ob-
servationsfx2;ig andfx1;ig from time1 up to and including
time j � 1. Let�0 be a given positive-definite matrix and
choose any initial estimate forL0, which we shall denote by
L̂0. Define the weighted disturbances~L0 and ~�i as well as
the estimation errorei as follows

8><
>:

~L0 � �
1=2
0 �max

�
L0 � L̂0

�
;

~�i � �
1=2
0 �max(�Li) ;

eHj � xH1;jLj � xH1;jL̂jjj�1;

(8)

where�0 is a positive definite matrix that reflects a priori
knowledge of how rapidly the state matrixLj varies with
time and�max(�) is the maximum singular vector of(�).
For every choice of estimatorF(�) we will have a transfer
operator from disturbancesn

~L0+; fvig
j�1
i=0 ; f

~�ig
j�1
i=0

o
to the state prediction error

fe1; e2; : : : ; ejg,



which we shall denote byTj (F). In theH1 framework,
robustness is ensured by minimizing the maximum energy
gain from the disturbances to the estimation errors. This
leads to the following problem:

Problem (The Time-Varying Problem) Find anH1 op-
timal estimation strategŷLj = F(x2;1; : : : ; x2;j�1) that
minimizeskTj (F) k1, and obtain the resulting

�2g = inf
F
kTj (F) k21 (9)

= inf
F

sup
~L
0
; ~�

i
;v

Pj
i=1 e

H
i ei

k~L0k
2
2 +

Pj�1
i=1 v

H
i vi +

Pj�1
i=1 k

~�ik
2
2

2

We shall assume, without loss of generality, that�0 and
�0 have the special form�0 = �I and�0 = �I, where
� and� are positive constants. Note that for a filter that
varies slowly with time,� will typically be very small (in
the simulation examples bellow, we choose� = 0:004 and
� = 0:9).

Solution (The Time-Varying Algorithm) The solution to
the above problem is given as follows [4]: Consider model
(7), and choose

�2g � sup
j

"
�+

1

xH1;jx1;j

#
xH1;j+1x1;j+1 j = 0; : : : ; i:

(10)
The centralH1 optimal estimator is then given by

L̂j+1 = L̂j+
~Pjx1;j

1 + xH1;j
~Pjx1;j

�
xH2;j � xH1;jL̂j

�
; L̂0 (11)

where
~P�1j = P�1j � ��2g x1;jx

H
1;j (12)

andPj satisfies the recursion

Pj+1 =
�
P�1j + (1� ��2g )x1;jx

H
1;j

��1
+�0 (13)

initialized withP0 =�0. 2

4. THE PROPOSED ALGORITHM: H1MSTA

Increase in the Number of Sources:Let A be the ma-
trix whose columns consist of the estimated steering vec-
tors generated using the found in the previous iteration.
When the number of sources increases fromM to M + 1,
the data snapshotx(t + 1) will contain a component not in
the span of the matrixA. This can be detected by taking the
orthogonal projection of the data snapshotx(t+1) onto the
subspace spanned by the estimated steering matrix, i.e,

x0(t+ 1)
�
= A

�
AHA

��1
AH x(t+ 1)

kx(t+ 1)k
(14)

and plotting1 � kx0(t + 1)k versus the iteration number.
There will be a peak in this plot when an increase in the
number of sources occurs. At this time, the algorithm is
reinitialized and the number of sources is set toM =M+1.

Decrease in the Number of Sources:The method for de-
tecting the disappearance of sources is to estimate the based
band signalm(t) using the least square technique, i.e,

m̂(t) =
�
AHA

��1
AHx(t): (15)

When the sources disappear, the corresponding elements
will be very small, given by

�
AHA

��1
AHn(t), from

which the source disappearance is detected. The algo-
rithm is then reinitialized and the number of sources set to
M =M � 1.

The proposed algorithm, which is called theH1MSTA

(H1 Multi-Source Tracking Algorithm ), can be pre-
sented in step format, as follows:
H1MSTA Algorithm

(i) Initialization: estimate the number of sourcesM and
the initial stateL0 using the first few snapshots.

(ii ) Estimate the linear combinerLj using the proposed
H1 estimation technique, given in equation (11).

(iii ) Use the estimatedLj to form the noise subspaceEn;j

and estimate the DOAs at timej (equations (3) and
(5) respectively).

(iv) Determine the change in number of sources at time
j + 1 ( received signalxj+1).

IF 1�kx0(t+1)k > threshold (based on equa-
tion (14))
THENM = M + 1 and re-estimate the initial
state matrixL0.

ELSEIF elements of̂m(t) < threshold (based
on equation (15))
THENM = M � 1 and re-estimate the initial
state matrixL0.

ELSE No change.

(v) Go to step(ii) until j = K (observation interval).

5. REPRESENTATIVE EXAMPLES

It is well known that imprecise knowledge of array char-
acteristics can seriously degrade the performance of a DF
algorithm. Therefore in this section an attempt is made to
quantify this degradation by showing a representative ex-
ample with respect to errors in the tracking performance re-
sulting from perturbations in the array manifold. The sim-
ulation environment contain a uniform linear array of10



tripole sensors operating in the presence of a two moving
polarized sources (
1 = 45o; �1 = 0; 
2 = 0; �2 = 45o)
of equal-power with an angular velocity of -0:1o and -0:2o

per snapshot. The signal-to-noise power ratio is taken to be
equal to 20dB, and the array propagation errors are assumed
to be random, uncorrelated with the noise, with zero-mean
and second-order moments given by

E
�
~a(�i) � ~a

H(�j)
	

= �2aI�i;j

E
�
~a(�i) � ~a

T (�j)
	

= 0: (16)

The array response is perturbed according to Equation (16)
for each snapshot, with�a = 0:2. Figures (1) and (2) shows
the result of the Yang’s PASTd [2] and proposed algorithm
for this signal environment, where the solid line represents
true directions and ‘o’ indicates the estimated directions.
It is clear from the results that theH1MSTA correctly
tracks the sources, while the PASTd algorithm does so,
but with less accuracy. Thus due to theH1 formulation,
H1MSTA is robust with respect to array calibration er-
ror.
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Figure 1: PASTd Algorithm
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Figure 2:H1MSTA

Figure (3) shows the simulation result which demon-
strates the source crossing signal environment; two mov-

ing sources with an angular velocity of0:1o and -0:1o per
snapshot. It is clear from the figure that theH1MSTA

successfully handle the problem of sources crossing.
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Figure 3:H1MSTA

6. CONCLUSION

In this paper, we proposed a newH1 approach to multi-
source tracking problem. The algorithm is capable of han-
dling rapidly changing DOAs, crossing sources, appearing
/ disappearing sources during the observation interval and,
furthermore, can accommodate array modeling uncertain-
ties. In addition, the algorithm is recursive in nature there-
fore less computationally intensive. Finally, the proposed
algorithm is compared with the well known PASTd algo-
rithm of [2]. From the simulation results, it has been shown
that the proposed technique out-performed the PASTd when
the array uncertainty exists.
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