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ABSTRACT ance / disappearance of sources during observation periods,

In this paper, a novel[> approach is proposed for track- and furthermore, which are less computationally intensive.
ing of polarized co-channel sources using an array of tripole  The goal of this paper is to outline the use of #ie®
antennas. The proposed approach partitions the observatioffiterion in the design of robust multi-source tracking algo-
data matrix into two sub-matrices that are used, in conjunc-fithm to deal with the problems mentioned in the previous
tion with a new state-space model, to providef&fr-type ~ Paragraph. The idea of applyitg™ estimation techniques
recursive estimation of inear combiner The linear com- 10 these problems is motivated by the fact that i es-
biner then provide estimates of the noise and signal sub-timation is robust and less sensitive to parameter variations,
spaces, from which the directions of the incident signals © model uncertainties, and to the lack of statistical informa-
can be estimated and tracked. The proposed technique i§0N on the noise signal. Furthermore, by using the tripole
also capable of handling the tracking appearing / dis-  a@nténnaarray we can discriminate multiple sources with re-
appearingsources during the observation interval and, fur- SPect to their direction and polarization. This property mo-
thermore, can accommodate array modeling uncertaintiesfivated us to use the tripole antenna array to handle tracking
The difficult problem of tracking the crossing sources can Of crossing sources.

be successfully handled by using diversely polarized array. ~ The paper is organized as follows. In Section-2, the
modeling of the received signal for tripole antenna array

is given. In Section-3, a new state-space model for the re-
ceived signal is proposed, which is then placed in the frame-

Most modern high-resolution direction-of-arrival (DOA) es- work of an HOO appr(_)ach. .In Section-4, thHOO mult!—
source tracking algorithms is proposed while in Section 5,

timation techniques extract information from a subspace of ) | 4. Finallv. in Secti
the covariance or data matrix associated with a received Sig_representatlve examples are presented. Finally, in Section

nal vector. However, major assumptions associated With6’ some concluding remarks are given.

these techniques are stationary environment and complete

knowledge of the received signal model (i.e., its array man- 2. MODELING THE ARRAY SIGNAL

ifold and statistical information about the noise signal). ) _ _

To handle a non-stationary environment, which is the caseThe signal-vector(t), received by an array oW tripole
when the sources move, or appear or disappear during th@ntenna operating in the presenceléfpolarized narrow-
observation, a number of adaptive algorithms for subspace?@nd sources, can be modeled as follows:

tracking have been developed ( [1], [2], and the references _

therein). These methods provide updates to subspaces at 2(t) = Am{t) + n(t), @)
every step of the subspace tracking procedure so that subwherem(t) is the message vector-signal arnd) represents
space parameter extraction methods such as MUSIC can bénhe additive white Gaussian noise. In equation @A)js
used in conjunction with these methods to track the mov- 3N x M complex matrix with its* columna(é;, ¢;,vi, ;)

ing sources. However, none of these techniques address théefined agD;«;) ® exp(—;jrTk;), where

array-uncertainty problem, which still persists, significantly

degrading the performance of the subspace-based direction-k; = 2= [cos(6;) cos(¢;), sin(8;) cos(¢:), sin(4:)]”
finding (DF) algorithms and also these methods are suitable D; = X [cosfl(pi gﬁg, %ﬁ_, AR

o_nly for slowly-_vary_mg DOAs. There is, therefore, con- a, = l[cosi, sinyiexp(jn), O],

siderable practical interest in the development of tracking

algorithms that can operate in the presence of array uncers is the array location matrix andy denotes Kronecker
tainties, rapidly changing DOAs, crossing sources, appear-product. Note that, the source is described by its four pa-
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rameters azimuth;, elevationg;, orientationry; and ellip- 3. THE H*> APPROACH
ticity n. The complex vectown,; represents the source po-
larization, andD; is an orthogonal matrix which transforms The H* estimation methods can be seen as a powerful and
the source polarization coordinate system to array coordi-robust solution to handle parameter variations, array uncer-
nate system. Note that, a tripole is sensitive to three di- tainties and noise effects with limited statistical informa-
mensional components of the electric filed and can be usedion. The idea is to come up with estimators that minimize
to exploit both DOA and polarization domain, that is, the (or in the suboptimal case, bound) the maximum energy
tripole antenna array can discriminate multiple sources with gain from the disturbances to the estimation errors [4]. This
respect to their direction and polarization. will guarantee that if the disturbances are small (in energy)
It is assumed that the matrix is of full rank M, that is, then the estimation errors will be as small as possible (in en-
M rows of A are linearly independent and hence the other ergy), no matter what the disturbances are. The robustness
rows can be expressed as a linear combination of thése  of the H* estimators follows from this fact.

rows. Hereafter, the firsi/ rows are assumed to be linearly To apply H> estimation techniques to array signal pro-
independent and the received signal veatds partitioned cessing, a new state-space model for the received signal of
as follows: a general array of sensors is developed. Using equations (2)

z A, n, and (3), thez,, portion of the received signal can be written

o | = A, |t (2)  as,

Lo 2 ny

z, =LYz, + (n, — L"n,). (6)
whereA; € CM*M gnd A, € CBN=M)XM  The |inear

combinerL, € CMx(3N-M) is defined as: It can be shown that the, portion of the received signal

vector at a particular timg obeys the following state-space

L7A; = Asor [L7 —In_y] il } =THA =0 model:
2
(3) Ljs1 = L;+ALj, j€l,K] @)
wherelsn_ar) andOin_arx s are the identity and the Ty, = Lfgl,j + v,

null matrices, respectively, arll € ¢3VN*BN-M) Equa- _ _
tion (3) implies that the steering vectar§y ) are orthog- ~ Wherey; = (n, ; — Li'n, ;) may include model uncertain-

onal to the columns off, whereys. = [6;, és,vi, " ties andAL; represents the time variation in the state ma-
This means that the subspace spanned by the columns dfiX- As itis unknown, we shall consider it as a disturbance.
the matrixT, spar{ T }, is included in spapE,, }, where In state-space terminology, the vectgiis themeasurement

E, is noise subspace, i.e, the eigenvectors associated witfioisewhile the matrixL; is the state matrix. o
the smallest eigenvalues of the data covariance mRiyix =~ BY USing the above state space model, the objective
Now, sinceT contains the blocksx s, its 3N — M is to estimate the unknown state matrix. LB} =

columns are linearly independent, therefore, F(2s,15- -+, 25 ;1) denote the estimate &f; given the ob-
servationgz, ; } and{z, ;} fromtime1 up to and including

spa{T} = spa{Ey,}. (4) time j — 1. LetIT, be a given positive-definite matrix and
It follows that the linear combiner defines the noise sub- choose any initial estimate féy, which we shall denote by
space. Note that, in contrast to the basis definedEpy  Lo. Define the weighted disturbancég andA; as well as
the basis defined by the columns'Bfis not orthonormal.  the estimation errat; as follows
However, the result of applying Householder transforms to

T will enable us to find an orthonormal basis fBrand an L, = I)’cmax (LO - f,o) ,
orthonormal basis for its orthonormal complement, which X — 1/2
- : omp - A, = Y omax(AL), )
is the signal subspacg,. Furthermore, it is shown in [3] 7 _  H "+

g = zi;Li -zl

that the following MUSIC-like function can be defined to =
estimate the DOAs where Y, is a positive definite matrix that reflects a priori
a knowledge of how rapidly the state matiix varies with
Fre = A\min <[ TTY [a,(¢) gy(@]> , () ) prety p

time andomax(+) is the maximum singular vector f).
where a, (1) and a, (1) are two steering vectors corre- For ever% chmé:_e ofsstlmatd‘i?(-) we will have a transfer
sponding to distinct polarizations angh,(-) is the min- operator from disturbances
imum eigenvalue of-). In this investigation, equation-(2) {E +, {v, 1] {A»}’f’l}
will be used as the starting point to arrive an alternative =0 T WRii=00 1=t i=0
modeling and then to propose a new approach for improving;, the state prediction error
the performance of multi-source tracking algorithm operat-

ing in the presence of array uncertainties. {e1,€2,- 55},
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which we shall denote by; (F). In the H> framework,

and plottingl — ||z'(¢ + 1)|| versus the iteration number.

robustness is ensured by minimizing the maximum energyThere will be a peak in this plot when an increase in the
gain from the disturbances to the estimation errors. Thisnumber of sources occurs. At this time, the algorithm is

leads to the following problem:

Problem (The Time-Varying Problem) Find an H>* op-
timal estimation strateg¥.; = F(zy,...,2, ;1) that
minimizes||7; (F) ||, and obtain the resulting

g = w7 (P ©)
J H
. Leile;
= b swp o= T AR
Loéi,yn_o“z E -1 Y'Y +Ei:1 1413
O

We shall assume, without loss of generality, thif and
Y, have the special foril, = uI andY, = pI, where

1 and p are positive constants. Note that for a filter that

varies slowly with time,p will typically be very small (in
the simulation examples bellow, we chogse- 0.004 and
©=20.9).

Solution (The Time-Varying Algorithm) The solution to

the above problem is given as follows [4]: Consider model

(7), and choose

1 . .
e <sup [p+—g— |z jzy 0 G=0,...0
J Ly iLy,5
(10)
The centralH > optimal estimator is then given by
R R Pz, ; N R
L =L+— 0 (:vH-—a:H-L~), Lo (11
j+1 J 1 +£{{ij£1,3‘ L2 T &1,5H] 0 ( )
where R
Pl =P — €%z jzl; (12)
andP; satisfies the recursion
—1
P]+1 = [P —+—( 2)1'1]1'{?]] ‘+‘ TO (13)
initialized withPq = II,. O
4. THE PROPOSED ALGORITHM: H>*MSTA

Increase in the Number of Sources:Let A be the ma-

trix whose columns consist of the estimated steering vec-
tors generated using the found in the previous iteration.

When the number of sources increases frbftto M + 1,
the data snapshef(t + 1) will contain a component not in

the span of the matriA. This can be detected by taking the

orthogonal projection of the data snapsh@t+ 1) onto the
subspace spanned by the estimated steering matrix, i.e,

, A :E(t—l—l)
T'(t+1) = A(AFA) AH” | (14)

reinitialized and the number of sources is setfo= M +1.

Decrease in the Number of SourcesThe method for de-
tecting the disappearance of sources is to estimate the based
band signaln(t) using the least square technique, i.e,

1i(t) =

When the sources disappear, the corresponding elements
will be very small, given by(AHA)_lAH@(t), from
which the source disappearance is detected. The algo-
rithm is then reinitialized and the number of sources set to
M=M-1.

(AFA) ™" AT (1) (15)

The proposed algorithm, which is called tRE°*MSTA
(H®° Multi-Source Tracking Algorithm ), can be pre-
sented in step format, as follows:

H>°MSTA Algorithm

(i) Initialization: estimate the number of sourcesand
the initial statelLy using the first few snapshots.

(if) Estimate the linear combinds; using the proposed
H*° estimation technique, given in equation (11).

(iii) Use the estimateH; to form the noise subspat, ;
and estimate the DOAs at timye(equations (3) and
(5) respectively).

(iv) Determine the change in number of sources at time
J + 1 (received signat; ;).

IF1—||z'(t + 1)|| > threshold (based on equa-
tion (14))

THEN M = M + 1 and re-estimate the initial
state matrixL.

ELSEIF elements ofn(t) < threshold (based
on equation (15))

THEN M = M — 1 and re-estimate the initial
state matrixL.

ELSE No change.

(v) Go to step(7i) until j = K (observation interval).

5. REPRESENTATIVE EXAMPLES

It is well known that imprecise knowledge of array char-
acteristics can seriously degrade the performance of a DF
algorithm. Therefore in this section an attempt is made to
quantify this degradation by showing a representative ex-
ample with respect to errors in the tracking performance re-
sulting from perturbations in the array manifold. The sim-
ulation environment contain a uniform linear array 1of



tripole sensors operating in the presence of a two movinging sources with an angular velocity 0f1° and 0.1° per

polarized sourcesy{ = 45%,m;1 = 0,72 = 0,m2 = 45°)
of equal-power with an angular velocity ai.1° and 9.2°
per snapshot. The signal-to-noise power ratio is taken to be
equal to 20dB, and the array propagation errors are assumet
to be random, uncorrelated with the noise, with zero-mean
and second-order moments given by

E{a:)-a" (05} = 0316
&{a6:)-a"9;)} = o. (16)

The array response is perturbed according to Equation (16)
for each snapshot, with, = 0.2. Figures (1) and (2) shows
the result of the Yang’s PASTd [2] and proposed algorithm
for this signal environment, where the solid line represents
true directions and ‘0’ indicates the estimated directions.
It is clear from the results that thHH*MSTA correctly
tracks the sources, while the PASTd algorithm does so,
but with less accuracy. Thus due to the° formulation,
H°>MSTA is robust with respect to array calibration er-
ror.
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snapshot. It is clear from the figure that thE°*MSTA
successfully handle the problem of sources crossing.
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Figure 3:H*MSTA
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Figure (3) shows the simulation result which demon-
strates the source crossing signal environment; two mov-
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Figure 1: PASTd Algorithm
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Figure 22ZH*MSTA

In this paper, we proposed a né#™ approach to multi-
source tracking problem. The algorithm is capable of han-
dling rapidly changing DOAs, crossing sources, appearing
/ disappearing sources during the observation interval and,
furthermore, can accommodate array modeling uncertain-
ties. In addition, the algorithm is recursive in nature there-
fore less computationally intensive. Finally, the proposed
algorithm is compared with the well known PASTd algo-
rithm of [2]. From the simulation results, it has been shown
that the proposed technique out-performed the PASTd when
the array uncertainty exists.
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