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ABSTRACT

We combine our earlier approach to context-dependent network
representation with our algorithm for determinizing weighted net-
works to build optimized networks for large-vocabulary speech
recognition combining ann-gram language model, a pronuncia-
tion dictionary and context-dependency modeling. While fully-
expanded networks have been used before in restrictive settings
(medium vocabulary or no cross-word contexts), we demonstrate
that our network determinization method makes it practical to use
fully-expanded networks also in large-vocabulary recognition with
full cross-word context modeling. For the DARPA North Ameri-
can Business News task (NAB), we give network sizes and recog-
nition speeds andaccuracies using bigram and trigram grammars
with vocabulary sizes ranging from 10,000 to 160,000 words. With
our construction, the fully-expanded NAB context-dependent net-
works contain only about twice as many arcs as the corresponding
language models. Interestingly, we also find that, with these net-
works,real-timeword accuracy is improved by increasing vocab-
ulary size andn-gram order.

1. INTRODUCTION

In previous work [9, 13, 15] we have shown that weighted au-
tomata provide a competitive unifying framework for all stages
of network creation and combination in speech recognition. In
this framework, a single algorithm,transducer composition[1], is
used to combine the input acoustic observations and various mod-
eling networks: acoustic models, the context-dependency model,
pronunciation dictionary and language model.

It is well accepted that context-dependent phone models are
very useful in high-accuracy recognition [5, 17]. However, given
the size of the various models in large-vocabulary speech recogni-
tion, we might expect that the fully-expanded context-dependent
model network built by combining cross-word context-dependent
models with a pronunciation dictionary and ann-gram language
model would be too big to be stored or used in an efficient recog-
nizer.

In applications with dynamically-changing language models
or dictionaries, it is not possible to build the full modeling network
in advance, so dynamic network composition is needed, such as,
for instance, our on-demand network composition method [15]. In
applications with fixed language model and dictionary, however,
there is in principle the opportunity for combining all the mod-
eling networks in advance into an optimized network. Whether
this is also practical depends crucially on the optimization meth-
ods used to avoid state explosion in cross-word settings, as we

shall describe presently. In particular, we will show that fully-
expanded context-dependent phone model networks for the North
American Business News (NAB) task are about twice the size of
the corresponding word-leveln-gram language model, and so can
be used directly without any dynamic expansion in a Viterbi de-
coder. Runtime savings arise both from the increased determi-
nacy of the model network achieved by our determinization algo-
rithm [8] and from eliminating the run-time overhead of dynamic
context-dependent expansion.

2. MODELS

The various levels of recognition modeling are implemented in
our system asweighted finite-state transducers[1, 2, 4], which
are finite-state networks in which each arc is labeled with an input
symbol, an output symbol and a negative log probability. Option-
ally, the input (output) symbol on an arc may be the null symbolε,
indicating that the arc does not consume input (produce output). A
path in a transducer pairs the concatenation of the input labels on
its arcs with the concatenation of the corresponding output labels,
assigning the pair the sum of the arc weights.

The transducer representation of models provides a natural al-
gorithm,composition, for combining multiple levels of modeling.
The composition of two weighed transducersS andT is a trans-
ducerS ◦T that assigns the weightw to the mapping from symbol
sequencex to sequencez just in case there is some symbol se-
quencey such thatS mapsx to y with weightu, T mapsy to z
with weightv, andw = u+ v. The states ofS ◦ T are pairs of a
state ofS and a state ofT , and the arcs are built from pairs of arcs
from S andT with paired origin and destination states such that
the output of theS arc matches the input of theT arc (null transi-
tion labels need to be handled specially) [9, 13]. The transducers
in our application are:
Context-dependency transducerC: Maps sequences of names

of context-dependent phone models (HMMs) to the correspond-
ing phone sequences. The topology of this transducer is deter-
mined by the kind of context dependency used in modeling (e.g.
triphonic, pentaphonic, tree-based). For explanatory convenience,
the examples and some of the discussion will use theinverseC−1

of C, which maps phone sequences to HMM name sequences.
For example, the transducer shown in Figure 1,C−1, encodes tri-
phonic context dependency for two hypothetical phonesx andy.
It does not represent a simple substitution, since it describes the
mapping from context-independent phones to context-dependent
HMMs, denoted here byphone / left contextright context. Each
state(a, b) encodes the information that the previous phone wasa
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Figure 1: Non-deterministic context-dependency model.
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Figure 2: Deterministic context-dependency model.

and the next phone isb; ε represents the start or end of a phone
sequence and∗ an unspecified next phone. For instance, it is
easy to see that the phone sequencexyx is mapped by the trans-
ducer tox/ε y y/x x x/y ε via the unique state sequence
(ε, ∗)(x, y)(y, x)(x, ε).
Dictionary transducer L: Represents word pronunciations, map-
ping phone sequences to their possible segmentations into word
sequences according to a (possibly multiple) pronunciation dictio-
nary.
Language modelG: Represents the probabilities of word se-
quences, mapping a sequenceto itself with a weight corresponding
to the language model probability of the word sequence. In gen-
eral, any finite-state language model could be used, although in
practice we usen-gram models,n = 2, 3.

Thus each path in the compositionC ◦L ◦G pairs a sequence
of HMM names with a word sequence, assigning it a weight corre-
sponding to the likelihood that the word sequence is pronounced as
specified by the HMM sequence. The compositionC ◦ L ◦G can
thus serve as the modeling network for a standard (e.g. Viterbi)
decoder in the usual way.

A distinctive feature of this approach is that context depen-
dency constraints are represented by a transducerC rather than
being embedded in the decoder, thus allowing experiments with
alternative types of context dependency and alternative ways of
combining it with the other models that take advantage of general
optimization techniques for weighted automata and do not require
any (possibly difficult) changes to the decoder.

3. ALGORITHM

Building the fully-expandedC ◦L ◦G network uses several novel
algorithms: efficient transducer composition [9], weighted trans-
ducer determinization [7, 8] andε-removal for weighted automata.

Weighted transducer determinization ensures that distinct arcs
leaving a state have distinct input labels. Clearly, a necessary con-

dition for transducer determinization is that the initial transducer
maps each input sequence to at most one output sequence. But
this is not sufficient: the mapping must besequential[1, 7]. These
conditions may be somewhat relaxed to mappings with bounded
ambiguity (orp-subsequential[7]). The purpose of applying de-
terminization to the model network is to decrease the number of
alternative arcs that need to be considered during decoding. In
many cases, the size of the model is also reduced, because redun-
dant paths are eliminated. Previous work in network optimization
[10, 11, 12] has used tree-based constructions that can be seen as
limited cases of determinization. General determinization has the
following advantagesover those approaches: networks need not be
constructed as trees, a wider range of networks can be optimized,
and the results are in general more compact than trees.

Informally, if the original transducer maps inputuv to x with
weightc and inputuw to y with weightd, then the determinized
transducer will admit a unique way of readingu from the initial
state. The output sequence associated tou will be the longest
common prefix ofx andy and the corresponding weight will be
min{c, d}.

As a first application of determinization, we observe that the
natural context-dependency transducerC−1 of Figure 1 is not de-
terministic: a state such as(x, x), for instance, has three outgoing
arcs with input labelx. However, transducer determinization read-
ily converts it to the deterministic version shown in Figure 2 ($ is a
new end-of-utterance symbol used to make the result sequential).
Because of this determinization, the inverseC of C−1 has a single
arc for each output phone leaving each state, which is essential in
building a small and efficientC ◦ L ◦G.

The determinization ofL ◦ G is the most demanding task in
our network optimization method. First of all, neitherL norG is
unambiguous.L may map a given phone string to several alterna-
tive words because of homophones.G may also have several paths
for a given word sequence, for instance when a variable length or
backoff language model is interpreted as a finite-state network al-
lowing all the alternative paths corresponding to different context
sequences [14]. In both cases, we disambiguate the models by
labeling the alternatives with auxiliary symbols (possibly on new
arcs), yielding two new transducersL′ andG′ whose composition
L′◦G′ can be determinized. The resulting deterministic transducer
P ′maps phone strings with interspersed auxiliary symbols to word
sequences. The auxiliary labels inP ′ are now replaced byε and
the weightedε-removal algorithm is applied to yield a transducer
P . The final fully-expanded model is thenC ◦ P . This transducer
is not in general deterministic because the transformation fromP ′

to P can create nondeterminism, but most of the nondeterminism
arising from shared phone sequences in the pronunciations of dif-
ferent word sequences will have been eliminated.

In summary, the compilation of the fully-expanded network
has the following steps:

1. Determinize the inverse of the context-dependency trans-
ducer and invert the result to produceC.

2. DisambiguateL intoL′ andG intoG′ by introducing aux-
iliary labels and transitions.

3. Perform the compositionL′ ◦G′.
4. DeterminizeL′ ◦G′ to yieldP ′.

5. Replace the auxiliary labels inP ′ by ε and removeε-arcs to
yield P .

6. Perform the compositionC ◦ P .



4. RESULTS

We used the approach outlined in the previous section to create
fully-expanded models for a variety of large-vocabulary recogni-
tion tasks, and tested the models in a simple general-purpose one-
pass Viterbi decoder. The decoder makes no special provision for
context-dependent models, since context-dependency constraints
are represented in the transducerC and merged by composition
into the overall expanded network. We give the sizes of the in-
dividual models and of the intermediate and fully-expanded net-
works for the North American Business News (NAB) task using
bigram and trigram language models and vocabulary sizes that
range from 10,000 to 160,000 words, as well as real-time recogni-
tion results.

The same context-dependency transducerC is used in all the
experiments. The transducer, which has 1523 states and 80,719
arcs, represents triphonic contexts clustered by decision-tree meth-
ods that take into account cross-word dependencies [17]. As ex-
plained earlier, the input label of each arc in this transducer names
an HMM, while the output label names a phone. There are 25,919
distinct HMMs and 5520 distinct HMM states, each associated to
a four-gaussian mixture model.

Table 1 lists the lexicon transducer sizes and out-of-vocabulary
rates for several vocabulary sizes. For a vocabulary sizeV , theV
most frequent words in the NAB 1994 text corpus were used.1

The pronunciations for these words were obtained from the AT&T
text-to-speech system, and then encoded as the optimized finite-
state transducerL.

Table 1: Size of lexicon transducers

Vocab. size States Arcs OOV rate (%)

10000 19146 39976 5.6
20000 37254 78898 2.9
40000 71769 154076 1.4
160000 271356 594145 0.4

Table 2 shows the sizes and test-set perplexities (excluding
unknown words) of the various language models used. These were
built using Katz’s backoff method with frequency cutoffs of 2 for
bigrams and 4 for trigrams [3], thenshrunkwith an epsilon of
10 using the method of Seymore and Rosenfeld [16], and finally
encoded into (non-deterministic) weighted automataG [14].

Table 3 lists the sizes of the transducers created by composing
lexicon transducers with their corresponding language models and
determinizing the result, as described in Section 3.

Finally, Table 4 lists the sizes for the transducers created by
composing the context-dependency transducer with each of the
transducers in Table 3. The resulting transducers represent the
fully-expanded networks that are searched during decoding.

We can thus see that the number of arcs in the fully-expanded
network is only about2.1 times that of the language model for
bigrams and2.5 times for trigrams, and so is quite practical
for real-time recognition. Moreover, the fully-expanded context-
dependent networks in Table 4 are only about2.5% larger than

1The vocabulary was automatically pre-filtered to remove corpus to-
kens that were deemed implausible words, for instance those that contained
no alphabetic characters.

Table 2: Size and perplexity of language models

Vocab. size N -gram order States Arcs Perp.

10000 2 10004 1960990 174
20000 2 20004 2591547 194
40000 2 40004 3121446 212
160000 2 160004 3818659 230

10000 3 1861458 7002522 113
40000 3 2771167 9195312 134

Table 3: Size of lexicons composed with language models and
determinized

Vocab. size N -gram order States Arcs

10000 2 1381669 4177688
20000 2 1858768 5538887
40000 2 2282180 6681514
160000 2 3050565 8232983

10000 3 7853810 17343182
40000 3 11084228 23474251

the corresponding context-independent networks in Table 3. Thus,
contrary to conventional wisdom, context-dependency, even with
cross-word contexts, does not significantly expand a context-
independent phone network if the context-dependency is suitably
applied as in our framework.

Figure 3 shows recognitionaccuracy as a function of recog-
nition time, in multiples of real time on a single processor of a
Silicon Graphics Origin2000, for the bigram models above on
the DARPA Fall ’95 Hub 3 evaluation test set (contrast C0). Fig-
ure 4 shows recognition results for trigram models in comparison
with results for bigrams of the same vocabulary size. The best
word accuracy shown here is 81.2%, while our best off-line sys-
tem performed at 90.5% word accuracy in the Fall ’95 evaluation
[6]. The better accuracy of our multipass,non-real-time system
can be attributed to more accurate and larger (but slower) acoustic
models, gender-dependent models, speaker adaptation, multiple-
pronunciation networks, wider search beams, and a 5-gram lan-
guage model.

In general, we see that larger vocabulary size andn-gram or-

Table 4: Size of fully-expanded context-dependent networks

Vocab. size N -gram order States Arcs

10000 2 1412769 4278821
20000 2 1911112 5679686
40000 2 2352944 6849884
160000 2 3135226 8431949

10000 3 8063802 17799882
40000 3 11353592 24018777
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Figure 3: Bigram recognition results for vocabularies of (1) 10,000
words, (2) 20,000 words, (3) 40,000 words, and (4) 160,000 words.
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Figure 4: Recognition results for the (1) 10,000 word bigram, (2)
10,000 word trigram, (3) 40,000 word bigram, and (4) 40,000 word
trigram.

der give better real-time performance. It is comforting that im-
proved modeling not only gives improved accuracy but also im-
proved speed with our optimized networks. Further, it suggests
that adding a rescoring pass just to apply a stronger language
model is suboptimal for real-time performance, since we get the
best performance by using our strongest language model in our
single pass.

5. CONCLUSION

We showed that our approach based on weighted automata pro-
vides a new method for creating optimized fully-expanded recog-
nition networks for large-vocabulary recognition with context-
dependent phone models. In earlier work, we had shown how the
same approach could be used with on-demand model expansion.
We thus have a single framework in which both fully-expanded
and on-demand models can be built and used efficiently in a sim-
ple decoder that stays unchanged even if the context-dependency
constraints or network combination method change.
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