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ABSTRACT

In [2] and [7], we presented our novel subspace distribution clus-
tering hidden Markov models (SDCHMMs) which can be converted
from continuous density hidden Markov models (CDHMMs) by
clustering subspace Gaussians in each stream overall models.
Though such model conversion is simple and runs fast, it has two
drawbacks: (1) it does not take advantage of the fewer model
parameters in SDCHMMs — theoretically SDCHMMs may be
trained with smaller amount of data; and, (2) it involves two sep-
arate optimization steps (first training CDHMMs, then clustering
subspace Gaussians) and the resulting SDCHMMs are not guar-
anteed to be optimal. In this paper, we show how SDCHMMs
may be trained directly from less speech data if we have a pri-
ori knowledge of their architecture. On the ATIS task, a speaker-
independent, context-independent(CI) 20-stream SDCHMM sys-
tem trained using our novel SDCHMM reestimation algorithm with
only 8 minutes of speech performs as well as a CDHMM system
trained using conventional CDHMM reestimation algorithm with
105 minutes of speech.

1. INTRODUCTION

The history of acoustic modeling is guided by the need to strike
a balance between the two conflicting goals: trainability and res-
olution of acoustic models. That is, the acoustic models should
contain enough fine acoustic details so that different models can
be resolved during decoding but too much detail generally reduces
the robustness of model parameters when estimated from limited
amounts of training data. In the past the technique of parameter
tying has been applied successfully to obtain such a balance by
reducing the number of parameters in acoustic models at various
granularities:phone(generalized biphones/triphones [6], context-
independentphones), state (tied-state HMM [10]), observation dis-
tribution (tied-mixture/semi-continuous HMM [4]) and distribution
parameters [9] have all been tied.

In the past, our subspacedistribution clustering hidden Markov
model (SDCHMM) was mainly presented as an approximation to
the continuous density hidden Markov model (CDHMM).K-stream
SDCHMMs are converted from CDHMMs by (1) decomposing
the feature space intoK disjoint subspaces or streams; and, (2)
clustering subspaces Gaussians fromall states andall phone mod-
els in each subspace. Thus one may also consider SDCHMMs as
CDHMMs tied at a smaller sub-phonetic unit, namely subspace
Gaussian. Since we have shown that SDCHMMs with many fewer
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model parameters — by one or two orders of magnitude — work
as well as the CDHMMs they derive from, one should be able to
train SDCHMMs directly from much less speech data. Such a di-
rect SDCHMM training scheme will also guarantee that the trained
SDCHMMs are optimal in, for example, the maximum likelihood
sense.

In this paper, we present the reestimation formulas of SD-
CHMM parameters and show how to train SDCHMMs from speech
data without intermediate CDHMMs.

2. REESTIMATION FORMULAS OF SDCHMM

SDCHMM parameters may be reestimated using the EM algo-
rithm in much the same way as CDHMM parameters [8].

2.1. Basics of HMM Reestimation Using EM Algorithm

We will use the following notations in our discussion:

t : time index
N : number of states in a HMM
ot : feature vector at timet
O : a time sequence of feature vectors(o1o2 � � �oT )
� : one current HMM
�

0

: reestimated HMM based on�
� : a set of HMMs
a : state transition prob. matrixfaijg; 1 � i; j � N � 1
ai : [ai1; ai2; : : : ; aiN ]
b : state observation pdf[b1; b2; : : : ; bN ]
� : initial state probability[�1; �2; : : : ; �N ]
q : a state sequence(q0q1 � � � qT )

�t (j) : probability of staying in statej of model� at timet

As usual quantities in boldface are matrices or vectors, other-
wise they are scalars.

Given�
0

(�) = �
0

(a;b; �), the auxiliaryQ function used in
the EM algorithm is:

Q(�; �
0

) =
X
q

P (O; q j �) � log P (O;q j �
0

): (1)

Since
log P (O;q j�

0

) = log(�q0) +

TX
t=1

log(aqt�1qt) +

TX
t=1

log(bqt (ot));

we may separate Eqn.(1) into a sum of three independentQ

functions:

Q(�; �
0

) = Q�(�; �) +

NX
i=1

Qai(�;ai) +

NX
i=1

Qbi
(�; bi) (2)



where,

Q�(�; �)=

NX
i=1

P (O; q0 = i j �) log(�i) (3)

Qai (�;ai)=

NX
j=1

TX
t=1

P (O; qt�1 = i; qt = j j �) log(aij)(4)

Qbi
(�; bi)=

TX
t=1

P (O; qt = i j �) log(bi(ot)): (5)

Maximization ofQ(�; �
0

) can be done by maximizing the
three independentQ functions separately, since each involves a
different set of optimization variables.

2.2. Reestimation of� anda in SDCHMM

As we only manipulate the state observation pdfbj(ot), the reesti-
mation formulas for the initial state probabilities (�) and the state
transition probabilities (a) will remain the same as those of con-
ventional HMM.

2.3. Reestimation ofb in SDCHMM

The state observation pdf for each state,j, is assumed to be a mix-
ture density withM components,bjm, and mixture weights,cm,
1 � m � M . Then by the definition of SDCHMM [2, 7] withK
locally independent streams, we have

bj(ot) =

MX
m=1

cm

KY
k=1

bjmk(otk) (6)

wherebjmk andotk are the projections ofbjm andot onto the
k-th feature subspace (or stream).

Since an HMM state with anM -mixture density is equivalent
to a multi-state with single-mixture densities [1], for simplicity
reason, let us consider without loss of generality only the case that
there is 1 mixture in each state observation pdf. Thus

bj(ot) =

KY
k=1

bjk(otk): (7)

Substituting Eqn.(7) into Eqn.(5), we have

Qbj
(�; bj) =

TX
t=1

P (O; qt = j j �)

 
KX
k=1

log(bjk(otk))

!

=

KX
k=1

 
TX
t=1

P (O; qt = j j �) log(bjk(otk))

!

�

KX
k=1

Qbjk
(�; bjk): (8)

As the streams or subspaces are assumed independent in the
local acoustic space (not global acoustic space as in tied-mixture
HMM), eachQbjk (�; bjk) can be maximized independently.

Now suppose in each subspacek, subspace pdf's are clustered
into L pdf codewordshkl(�) where1 � l � L. That is,8�

0

2
�;9l 2 [1; L] such thatbjk(�) = hkl(�).

Hence, the reestimation ofbjk(�) becomes the reestimation of
hkl(�) and may be expressed verbally as follows:

reestimation of
parameters of pdf
hkl

=

reestimation of parameters of pdf in
convention CDHMM,but the statis-
tics are gathered from all frames be-
longing toall bjk(�) � hkl(�) overall
states andall models

In particular if the pdf's are Gaussians, that is,

hkl(�) � N(Ok;�kl;�kl)

then

�kl
0

=

P
�2�
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j : bjk�hkl
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The extension to state observation pdf withM -mixture den-
sity is straightforward. Note that though the reestimation formulas
look like those of tied-mixture HMM, they are only equivalent for
state pdf with 1-mixture density and represent different updates in
the general case when the state pdf is anM -mixture density func-
tion.

3. SDCHMM TRAINING

If there is a priori knowledge of the tying structure of the sub-
space Gaussians in the SDCHMMs, they can be trained directly
from a speech corpus without going through CDHMM training in
a general scheme shown in Figure 1. The tying structure may be
obtained from SDCHMMs converted from CDHMMs trained on
the same task, on a speech corpus recorded under similar envi-
ronment (channel, SNR, speaking style) or from a general phone
recognizer.

4. EVALUATION ON ATIS

We test the hypothesis that SDCHMMs should require less data
to train than CDHMMs with the ARPA-ATIS [3] recognition task.
ATIS (Airline Travel Information Service) is a medium-vocabulary
task containing spontaneous goal-directed speech for air travel in-
formation queries.

4.1. Signal Processing

At every 10ms, 12 MFCCs (after mean subtraction) and power,
their first and second order time derivatives are extracted from a
20ms frame of speech producing a 39-dimensional feature vector.

4.2. Recognition

All CDHMMs and SDCHMMs trained in this paper are evaluated
on the 1994 official test set of 981 utterances(91 mins.) using
a vocabulary size of 1532 words, a word-class bigram language
model with a perplexity of about 20 and a one-pass beam search
with a fixed pruning threshold.
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Figure 1: True SDCHMM training

Table 1: Training data subsets of ATIS

SUBSET #FRAME TIME(min) DESCRIPTION

S1-16 8883240 1480 16897 files
S1-4 2140470 357 4226 files
S1-2 1080650 180 2114 files
S1 527599 88 1055 files
S0 249565 42 500 files in S1
A 101309 17 100 files in S16
B 49616 8.3 50 files in A
C 27811 4.6 25 files in B
D 12421 2.1 12 files in C

4.3. Training Data Partitioning

A collection of 16896 speech files from the ATIS-2 and ATIS-3
corpora, which were collected over five sites: BBN, CMU, MIT,
NIST and SRI are employed in the experiments. They are divided
into 16 subsets of roughly 1000 files, denoted as S1 to S16, so that
data from the five sites are spread out into each subset as equally
as possible. The 100 longest utterances from S16 are selected
for bootstrapping HMMs and is denoted as subset A. Four other
smaller subsets denoted as S0, B, C and D are derived from these
17 subsets as shown in Table 1. Subsets S5 to S16 are not used in
this paper.

Table 2: Number of Gaussians in CDHMMs trained with various
numbers of mixtures and data subsets

#MIXTURES TRAINING DATA SUBSETS

A S0 S1 S1-2 S1-4

1 142 142 142 142 142
2 257 273 280 283 283
4 452 516 535 559 563
8 735 927 1022 1077 1117
16 1019 1563 1863 2050 2143

4.4. Training Procedure

Training is done with datasets: A only, B only, C only, D only, S0
only, S1 only, S1-2, and S1-4 (meaning S1, S2, S3 and S4). Hand-
labeled data are simulated by segmenting the bootstrapping data,
subsetA, at the phone level with our context-independent(CI) ATIS
CDHMMs trained over 12,000 files. There are altogether 48 mono-
phones. Bootstrapped CDHMMs or SDCHMMs are initialized
from the segmented subset A data by assuming uniform state-
level segmentation followed by 20 iterations of EM algorithm. The
bootstrapped CDHMMs or SDCHMMs are used to perform state-
level segmentation for the set of training data under experiment.
The segmented data are then used to reestimate HMM parameters
in the segmentalk-means training(SKM) procedure [5]. The SKM
procedure is repeated at most twice to obtain the final CDHMMs
or SDCHMMs. However, for SDCHMM training with subsets A,
B, C and D, only SDCHMM bootstrapping is done to obtain the
final SDCHMMs as more SKM iterations do not improve results.

In all SDCHMM training, the subspace Gaussian tying struc-
ture is obtained from the 20-stream SDCHMMs (WER = 9.5%)
which is converted from the best 16-mixture, 2143-Gaussians
CDHMMs trained with S1-4 (WER = 9.0%), and they have 128
subspace Gaussian codewords per stream.

In all CDHMM training, the number of mixtures is varied from
1 to 16 for each training dataset.

5. RESULTS

Figure 2 compares recognition word error rates (WER) between
SDCHMMs trained with SDCHMM training algorithm and CD-
HMMs trained with the CDHMM training algorithm when the
amount of training data is progressively reduced.

As the amount of training data decreases, in general, we are
limited to less complicated HMMs (with fewer mixtures and Gaus-
sian components) and the resulting HMMs may not generalize
well to test data. However, as seen in Figure 2, 20-stream 128-
codeword SDCHMMs trained with the SDCHMM training algo-
rithm allows us to reduce the amount of training data to 17 mins.
of speech(subset A) before performance degrades. On the other
hand, CDHMM training requires much more training data; thus
we only can train CDHMMs with the subsets A, and S0 up to S1-
4. The number of Gaussians in the CDHMMs in each training
condition is summarized in Table 2.

From Figure 2, it appears that SDCHMMs require almost an
order of magnitude less of training data to achieve comparable ac-
curacies of the CDHMMs. In particular, SDCHMMs trained on
datasets D, C, B and A give approximatively the same accuracies
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Figure 2: Comparison between the amount of training data required in CDHMM training and SDCHMM training: Its effect on ATIS
recognition (where M = #mixtures, and the 20-stream SDCHMMs have 128 subspace Gaussian codewords per stream)

as the CDHMMs trained on subsets A, S0, S1, and S1-2 respec-
tively.

One common approach to improving the CDHMMs accuracy
is by training fewer Gaussian mixture components when only few
training data are available. Our result shows that the use of SD-
CHMMs is much more effective than this strategy.

6. CONCLUSION

From the result of our experiment, SDCHMM training allows esti-
mating SDCHMM parameters with roughly 10 times less data than
CDHMM training when the amount of data is relatively small. Al-
though SDCHMM training requires a priori knowledge of the sub-
space Gaussian tying structure, and in our experiment, the tying
structure is derived from an existing recognizer on the same task,
our results are still significant and may have the following applica-
tion: instead of doing conventional speaker or environment adap-
tation, one may estimate speaker- or environment-specific SDCH-
MMs with few enrollment utterances using a tying structure de-
rived from a speaker- or environment-independent system for the
same task. Further, for our future work, we will investigate whether
the subspace Gaussian tying structure is speaker or environment
independent, or even task independent.
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