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ABSTRACT

In this work, inspired by the application of human-machine
interaction and the potential use that human-computer in-
terfaces can make of knowledge regarding the a�ective state
of a user, we investigate the problem of sensing and recog-
nizing typical a�ective experiences that arise when people
communicate with computers. In particular, we address
the problem of detecting \frustration" in human computer
interfaces. By �rst sensing human biophysiological corre-
lates of internal a�ective states, we proceed to stochasti-
cally model the biological time series with Hidden Markov
Models to obtain user-dependent recognition systems that
learn a�ective patterns from a set of training data. Labeling
criteria to classify the data are discussed, and generaliza-
tion of the results to a set of unobserved data is evaluated.
Signi�cant recognition results (greater than random) are
reported for 21 of 24 subjects.

1. INTRODUCTION

1.1. Motivation

A�ective Computing is a newly emerging �eld which has
been de�ned as \computing that relates to, arises from, or
deliberately inuences emotions" [1]. There exists a variety
of challenging open research problems in this area, espe-
cially concerning the issue of emotion detection and classi-
�cation. The aim of the work presented here is to develop
systems that learn typical responses of a user during what
psychologists call \a high arousal situation," in particular
the kind of frustration that arises while interacting with a
computer [2]. The emphasis of this work is on a�ect de-
tection and classi�cation; it should be noted, however, that
this work is motivated by and has implications for other
functionalities of a complete a�ective system. For instance,
the ability to evaluate the a�ective state of a user can help
the interface designer build more intelligent adaptive inter-
faces.

1.2. Experimental Methodology

One of the major obstacles in implementing a system that
acts on a�ective signals resides in collecting suitable data for
developing a computational model for the system. To this
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e�ect the following experimental situation was conducted
in a laboratory setting.

The subjects came to the lab to participate in an ex-
periment that had been advertised on bulletin boards on
campus. The subjects were informed that they were to
participate in a visual perception experiment, and the real
purpose of the experiment was not revealed to them until
the debrie�ng period at the end of the experiment. The
experiment consisted of a simple computer game in which
there was a monetary reward motivation for superior perfor-
mance. In order to create a very competitive environment,
all subjects were made aware that this was a competitive
task and that their reward was dependent on their perfor-
mance with respect to the rest of the players. The actual
task consisted of a simple interaction with a computer in
which the user was presented with a series of slides con-
taining multiple items of four di�erent shapes and asked
to indicate which shape contained the largest number of
items. The only user interface allowed to the subjects was
a mouse which they used to click on an icon corresponding
to the desired answer. The mouse was designed to enter
a delay mode at pre-speci�ed intervals during the execu-
tion of the experiment. This was done to try to create the
impression that the mouse was failing to work at random
points, thus interfering with the subject's goal of �nishing
in a short time. Subjects were given the choice of repeat-
ing the experiment two more times (up to a total of 3 ex-
perimental sessions) in order to gather more data for the
training phase. The number of stimuli in each session were
5,4, and 7 respectively. During the execution of the ex-
periment, each subject's electrodermal response (GSR) and
blood volume pressure (BVP) were sensed, sampled at 20
Hz, and recorded for later processing. Fig. 1 shows a typ-
ical response obtained from one of the experimental sub-
jects. The vertical bars indicate the onsets of the stimuli
(the times when the mouse failed to work).

2. MODELING

2.1. De�ning a Ground Truth

In a classical recognition problem a set of data is used for
learning the properties of the model under the di�erent
classes to recognize. The classi�cation of this training data
is usually �xed, and this knowledge is then used to derive
the properties of the separate classes. However, establishing
a proper labeling for the training data of this experiment
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Figure 1: Physiological Signals

is one of the aspects of this problem which deserves care-
ful consideration since the class categorizations we shall use
to label the data are based on a presupposed reaction to a
stimulus, which is not guaranteed. In other words, there is
an uncertainty associated with the class to which the data
belongs. The following may be true:

� a stimulus failed to induce a high arousal response

� a subject showed a high arousal response in the ab-
sence of the controlled stimulus due to another un-
controlled stimulus

In the discussion that follows, in order to make the prob-
lem tractable, we consider the idealized case where there is
a response if and only if a stimulus occurs. An intuitive ap-
proach to labeling regions consists of using a time window
after the onset of the stimulus to designate temporal regions
corresponding to \frustration" (F ) and \non-frustration"

(F ). Based on this, we have drawn the following labeling
rules to assign a classi�cation to the data:

� Allow a 1-second period after the stimulus onset with-
out classi�cation

� Following this, use a 10-second (rectangular) window
to designate a F -class

� Allow a 5-second period after this without classi�ca-
tion

� Designate the remaining data until the ocurrence of
the next stimulus as F -class

It is not clear how long the time window should be so
as to capture physiological changes of interest due to the
stimulus. We have used a 10-second window, and in order
to reduce the uncertainty between transitions between F

and F , have allowed a latent period of 5 seconds before
a new classi�cation is made. The 1-second latency period
following the stimulus attempts to model a delayed reaction
time between the onset and the response.

2.2. Learning Algorithms

Human physiology behaves like a complex dynamical sys-
tem in which several factors, both external and internal,

shape the outcome. In approximating such a system, we
are interested in modeling its dynamical nature and, given
that knowledge of all the independent variables that a�ect
the system is limited, we want to approach the problem in
a stochastic framework that will help us model the uncer-
tainty and variability that arise over time.

We have approached this problem by implementing a
Hidden Markov Model (HMM) based recognition system.
We have focused on user-dependent systems not only to ac-
count for variability across subjects, but also motivated by
the potential applications of an interface that learns physi-
ological a�ective patterns from an individual.

Estimating the parameters of an HMM from the train-
ing data has been discussed at length in the literature. We
have used the standard Baum-Welch re-estimation algo-
rithm to obtain initial parameters of the model [3],[4], and
then improved initial estimates with the embedded Baum-
Welch algorithm [5]. Once the systems have been trained,
the performance is assessed by applying a Viterbi decoder
to a set of testing data and producing a set of transcription
labels [6]. E�cient software implementation of these learn-
ing algorithms was done using the Hidden Markov Toolkit
(HTK) (version 2.0) (developed at Cambridge University
and Entropic Research Laboratories) [5].

How to choose a model structure (i.e. number of states,
output distribution types, and model topology) is not clear
for the signals we have chosen to measure. In order to in-
vestigate the performance of di�erent model types, and also
allow model types to be user dependent, we have considered
a family of possible HMMs, categorized according to:

� number of states: N 2 f4; 5; 6; 7g

� number of Gaussian components in output distribu-
tion: K 2 f1; 2g

� type of covariance matrix �: diagonal, full

� transition probability type: left-to-right, ergodic

HMMs for each set of user data were trained over all result-
ing combinations to select the best performer.

2.3. Feature Extraction

From a set of raw data, such as shownn in Fig. 1, we need
to obtain a set of signi�cant feature signals that might
have correlates with internal a�ective states. This is one
of the most important research problems that exist in this
area: the mappings between a�ective states and physiolog-
ical states is still an area which is being investigated at
large in the psychophysiology community. In deciding on
a feature set, we must account for classical measures of af-
fective states (i.e., level of arousal as registered in a GSR
signal, heart acceleration, etc), while bearing in mind that
we can also allow the models we are using to exploit more
complex dynamic patterns that might not have received so
much attention in other studies.

Let g[n] and b[n] represent the discrete time signals ob-
tained by sampling the GSR and BVP signals. It is cus-
tomary to measure changes in the GSR signal to predict
levels of arousal. Motivated by this, we de�ne the following
signals:
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Equation (1) is just the GSR signal minus a time varying
local sample mean obtained by windowing the GSR signal
with an advancing N point rectangular window whereas (2)
is a time varying estimate of the local variance of the signal.
It is obtained by windowing the GSR with an advancing
N point rectangular window and evaluating the unbiased
sample variance for every point.

Inspection of the BVP signal reveals that it exhibits a
richer structure than the GSR signal.
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Figure 2: Portion of a BVP signal

As shown in Fig. 2, the BVP signal for instance has a
richer harmonic content due to its periodic behavior over
time. Its amplitude is also modulated in a way that we
might exploit for feature extraction. In particular, the time-
varying upper and lower bounds on the amplitude of the
signal|let us call them bu[n] and bl[n]|may be used to
de�ne:

bp[n]
:
= bu[n]� bl[n] (3)

as the \pinch" of the signal.
By �nding the peaks of the BVP we can �nd the peak-

to-peak intervals, and by taking this interval as one period
of the harmonic oscillations, we estimate local frequency
as the reciprocal of the peak-to-peak intervals. Let Tp2p[n]
denote the number of samples between adjacent peaks (ex-
perimentally, we found this simple method to agree with
the results of the �rst harmonic obtained by the more com-
putationally intensive short time Fourier analysis). By reg-
istering changes in the value of Tp2p[n] (cycle duration), we
can obtain an estimate of acceleration and deceleration of
the harmonic cycles. This is a signal of interest since BVP
is highly correlated with heart rate, and therefore so are
changes in the BVP frequency. De�ne then:

b�T [n]
:
= Tp2p[n]� Tp2p[n� 1] (4)

Some of the rich structure of the BVP may be described
by changes over time as well as frequency. A way of study-
ing this behavior is to observe its evolution in the time-
frequency plane; one such approach was hinted at when we
mentioned the short time Fourier transform. Another time-
frequency approach to have received much attention lately,
in particular in the study of non-stationary biosignals for
feature extraction, is wavelet analysis [7]. Let us assume
that an orthogonal wavelet decomposition of the BVP sig-
nal is implemented with J levels of resolution (i.e., via a

�lter bank decomposition), and let fd̂jkg be the wavelet co-
e�cients quantifying the level of \detail" at level j. Similar
to (2), we can obtain a local estimate of the variance of the
wavelet coe�cients by de�ning:
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where d(j)[n] is a time series obtained by interpolating the

wavelet coe�cients fd̂jkg (this is done for the convenience
of working with time series that are all of the same length).
Using (1), (2), (3), (4), and (5), we then de�ne the following
5-dimensional feature vector:

x[n] =
�
g�[n]; gv[n]; bp[n]; b�T [n]; d

(j)
v [n]

�T
(6)

In the implementation that follows, these are the values
of the constants used in obtaining the features: N = 200 in
(1) and (2) (windowing the GSR with a 10 second window),
M = 30 in (5) (windowing with a 1.5 second window), j = 3
in (5) using Daubechies-4 orthogonal wavelets [8].

Also, in order to avoid numerical errors (especially when
estimating covariance matrices of very small values), the ex-
tracted features were scaled to exhibit a higher range of am-
plitudes. For these simulations we used the following scale
factors: [4; 10; 0:5; 500; 0:02]T . The values were chosen
to keep the data within the range �2.

3. RESULTS

Recognition rates were evaluated by determining the per-
centage of instances of F and F classes that were classi-
�ed correctly within the time boundaries determined by
the ground truth. Part of the problem consists of �nd-
ing potential boundaries between the classes, and deter-
mining whether the boundaries established in the recogni-
tion phase contain the classes assigned in the ground truth.
Rather than treating this as a point-by-point classi�cation,
we are evaluating it according to the number of labels that
were correctly \detected". Fig. 3 shows the distribution
of the overall recognition rates for individual subjects for
the training and testing sets. Furthermore, Fig. 4 shows
the recognition rates obtained for each label that was being
classi�ed.

Overall recognition rates greater than 50% were ob-
tained for 7

8 of the subjects in the data set. It should be
kept in mind that people are not perfect at recognizing af-
fective expression, and we do not expect perfect recognition
from a computer. The goal to beat, at least initially, is bet-
ter than random or 50%. This was achieved by the method
for 21 of 24 subjects.
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Figure 3: Histogram of Overall Recognition Rates
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Figure 4: Histogram of Recognition Rates for each Label

No single HMM structure was found to consistently
perform better across all subjects, although left-to-right
topologies tended to be the best performer for most sub-
jects; as were HMMs with 6 and 5 states predominantly,
and unimodal output distributions. Full and diagonal co-
variance matrices performed comparatively. In addition,
we evaluated the performance of the systems under an al-
ternative ground truth. The objective under this ground
truth was to model the subjects' habituation to the stim-
uli and anticipation of where the mouse failures might have
ocurred. The system was found to perform better, however,
under the standard ground truth.

4. CONCLUSIONS AND FURTHER

RESEARCH

This work constitutes one research e�ort in the area of
recognition of human a�ect for a�ective computing applica-
tions. In particular, this work has approached the domain
of human-machine interaction where there is arguably much
room for improving the quality of human-computer inter-
faces. Motivated by the present inability of these interfaces
to incorporate much of the a�ective nature of a human
response into their system, we have explored the topic of
recognition of human frustration as it arises when humans
confront an interface which o�ers a faulty or ine�cient de-
sign.

The data analysis was based on a set of biosignals col-
lected in a laboratory setting. Using Hidden Markov Mod-

els, a stochastic learning algorithm for time series, and vari-
ous signal-dependent features we developed subject-dependent
systems that learn and predict patterns corresponding to
the presence and absence of the a�ective experience we
wanted to model. Using this approach, we have obtained
recognition rates over 50% for 21 out of 24 subjects. Further
research in this area include rede�ning the ground truth to
account for some of the di�culties explained in Section 2.1,
and �nding alternative features from the data to improve
the results.
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