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ABSTRACT

In this paper we will introduce a method of isolating and
extracting certain class of local singular behaviours of sig-
nals/images which in turn will lead to a method of point-
wise noise estimation and suppression. The underlying mo-
tivation is to decompose functions directly in terms of com-
ponents which would naturally represent di�erent orders of
regular or singular behaviours de�ned by the local H�older
exponents. We have shown that such a decomposition can
lead to a factorization of the spectrum of the singular por-
tion of the signal in terms of the spectrum of the original
signal and that of a denoising �lter.

1. CLASSICAL DENOISING METHODS

These methods can be broadly divided into two main cat-
egories: those based on statistics and the ones based on
the extraction of the regularity. In the former category the
early tools were based on linear �ltering which were rapidly
replaced by non-linear tools mostly based on order statistics
(L-estimators [8]). The most well known �lter in this cat-
egory is the median �lter originally introduced by Tuckey
in time series analysis [10]. Since then, many di�erent ver-
sions of this class of �lters have been introduced [8].

In the second category one can identify two trends: one
is based on the local regularity of a function and the other
on the notion of the global regularity. The �rst group is
based on the assumption that if the sampling period is small
enough then the Taylor series expansion of the signal can
be locally truncated to the kth order, in which case one can
�t locally a kth order polynomial using n > k data points.
The problem will then reduce to that of optimizing a cost
function so that k local parameters can be determined us-
ing n observations. Therefore, in this method every obser-
vation is combined with its immediate neighbours in order
to identify the analytic nature of the underlying signal in
the neighbourhood of each sampling point. The method is,
thus, imposing local kth order regularity.

In the second trend regularity of a given signal is con-
sidered globally. The most simple way of de�ning global
regularity is in the Fourier domain using the results based
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on Riemann lemma [7], which suggests that the Fourier se-
ries expansion of the regular and the irregular portions of
a function have di�erent convergence rates. A whole set of
tools have been developed for extracting irregularity on this
basis. As for the irregularities the common assumption is
non-analyticity.

The advantage of this approach is simplicity, since one
would only need to design a �lter according to some op-
timality criterion and then obtain the results by a simple
multiplication in the Fourier domain. However, whatever
the optimality criterion, their performance is usually lim-
ited by the choice of some parameter depending on the noise
statistics (the cut-o� frequency for example).

2. MORE RECENT METHODS

All above mentioned methods would considerably loose their
performance when the noise is more prominent or has a
higher power than the underlying signal, and therefore highly
depend on the noise variance and/or its estimation. Recent
improved methods are based on the extraction of local reg-
ularity using Lipschitz or H�older exponents:

De�nition 1 A function f(t) is said to belong to a class of
functions that are Lipschitz of order � ( and is denoted by
f 2 Lip�), � 2 ]0; 1], if for any t0 and an arbitrarily small
�, there exists a positive �nite constant c such that:

j f(t0)� f(t0 + �) j � c j � j� (1)

It follows that for � 2 ]0; 1[ the function is singular at t0 and
for � = 1 it is di�erentiable at t0. Higher order regularities
(or lower order singularities) can be de�ned by k < � �
k+ 1, where k 6= 0 is an integer.

Extensive literature is available dealing with theoretical
aspects of H�older exponents. Recently, algorithms have also
been proposed in signal/image processing which use these
results together with multi-scale analysis based on wavelet
transforms for extracting local isolated singularities, and
denoising [1][2][3][4][6].

Most of these methods propose a three stage approach:
decomposition, characterization of singularities followed by
some sort of thresholding and reconstruction. Both decom-
position and reconstruction are based on wavelet transform
(of possibly di�erent types). The major di�erence between



these algorithms is probably at the second stage, namely
in the way they characterize singularities whether for elim-
inating or preserving.

Our motivation is to combine these three stages. An
obvious approach would be to decompose a given signal di-
rectly in terms of components that would naturally separate
di�erent orders of singularities, in which case the extraction
of singularities of particular order could be easily achieved
by removing the corresponding terms. The following section
will sketch a background for this.

3. EXTRACTING INTEGER AND

FRACTIONAL ORDER SINGULARITIES

We will �rst consider the problem for integer order sin-
gularities. This will give us an insight to the problem at
fractional orders. From the calculus of complex functions
we know that:

De�nition 2 A function f(z) is analytic in a simply con-
nected region � if: I

�

f(z)dz = 0 (2)

where the integral is taken around any simple closed Jordan
curve inside the region �.

The extension to multiply connected regions is straight-
forward and well known. Note also that analyticity in the
complex plane is more restrictive than the one along the
real axis, which is simply de�ned by the convergence of
the Taylor series (ie. when f 2 C1). There is, however,
an equivalent expansion in the complex plane if we assume
that f is singleton (ie. no branch cuts). This expansion is
given by Laurent series:

f(z) =

1X
r=�1

ar(z � z0)
r (3)

where ar =
1

2�i

I
C

f(z)dz

(z � z0)1+r
(4)

where z0 is any point inside the contour of integration C.

For the functions to be considered hereafter, we will
assume that, for every point z0, there exists an annulus
A0 <j z � z0 j< A1 in the complex plane inside which the
series is uniformly convergent.

De�nition 3 When A0 = 0 and f is analytic everywhere
on a disc 0 <j z � z0 j< A1, except at z = z0, then z0 is
said to be an isolated singularity of f and �� fz0g is said
to be a deleted region of z0.

We will see below that isolated singularities can be eas-
ily removed. This is done by simply removing the so called
principal part of the Laurent series:

fp(z) =

�1X
r=�1

ar(z � z0)
r

=

1X
r=1

a�r(z � z0)
�r (5)

Theorem 1 Let f(z) be a function de�ned on C with a
set of (possibly denumerable) isolated integer order singu-
larities. Let also the non-singular portion of f be an `2(C)
band-limited function. Then the Fourier transform of the
principal part of its Laurent series expansion at any singu-
lar point z0 satis�es:

f̂p(u)jz=z0 = f̂(u)
�

1

iu� 1

�
(6)

For proof see [9].

The immediate consequence of the above theorem is
that integer order isolated singularities of a function may be
simply removed by multiplying its spectrum by 1

iu�1
. How-

ever, this result is of no practical interest since the order of
local regularity of functions is measured by � (as de�ned
earlier), which is a continuous parameter in IR. Using the
above result one can not isolate singularities of non-integer
order that lie in the interval ]� 1; 0].

To extend the results to fractional singularities, we use
the Riemann series which is de�ned using fractional deriva-
tives:

De�nition 4 (Riemann series) The Riemann series of a
function f on C is de�ned by:

f(z) =

1X
r=�1

ar(z � z0)
r+� (7)

ar =
Dr+�
z�b f(z)

�(1 + r + �)
(8)

where, Dr+�
z�b denotes the fractional derivative operator of

order r+ � with respect to z� b, � is an arbitrary complex
number, and � is Euler's gamma function.

De�nition 5 (fractional derivative) The fractional deriva-
tive of f is given by Cauchy's integral formula:

Dr+�
z�b f(z) =

�(1 + r + �)

2�i

I
�

f(z)dz

(z � z0)1+r+�
(9)

Theorem 2 Let f(z) be a function de�ned on C with a
set of (possibly denumerable) isolated non-integer or integer
order singularities. Let also the non-singular portion of f be
an `2(C) band-limited function. Then the Fourier transform
of the principal part of its Riemann series expansion at any
singular point z0 satis�es:

f̂p(u)jz=z0 = lim�!�1+ f̂(u)K(u)

where K(u) =
�

u��

1+u2

�
u exp(�i�)� exp

�
i�
2
� i�

���
(10)

with � = �
2
(1 + �)sgn(u) and sgn the signum function.

See [9] for proof.

The above theorem is interesting since it implies that
non-integer singularities below a given order r + � can be
removed using the �lter K(u). This is equivalent to ex-
panding a function directly in terms of H�older exponents
and removing the terms that correspond to exponents be-
low a given value.



4. IMPLEMENTATION AND RESULTS

To implement the �lter in (10), we notice that:

lim
�!�1+

K(u) =
u

1 + u2
(u� i) (11)

which corresponds to the spectrum of a one-sided exponen-
tial and hence is separable in multi-dimensions. It, there-
fore, follows that at the limit the following �lter will extract
the regular portion of a given signal:

1�K(u) =
1� iu

1 + u2
(12)

To apply the results for denoising, we recall that the Gaus-
sian noise is a nowhere di�erentiable continuous function
[5], whose H�older exponents are uniformly negative [6], whereas
regular functions are uniformly Lipschitz positive. This im-
plies that if the observation contains Gaussian noise, then
the noise removal can be simply achieved by applying the
above �lter.

Figure 1 shows some simulation results for a noisy ob-
servation of signal to noise ratio SNR ' 7dB which has
increased to 17dB after suppression. In Figure 2 we have
a simulation for a worse case where the noisy observation
was at SNR ' 1dB and increased to almost 13dB after sup-
pression.

Figure 1: Test signal, noisy observation (SNR ' 7dB) and
the restored signal (SNR ' 17dB) superimposed

Many simulations for 2D case were also performed. In
the �rst set, shown below, we have SNR ' 2:6dB for the
corrupted image and SNR ' 11:5dB for the restored image.
In the second set the noise power in the corrupted image is
higher than the signal power: SNR ' �2dB. The restored
image has SNR ' 8:5dB.

We have compared our method with a median �lter.
Several experiments were performed by di�erent kernel sizes
for the median �lter. The results shown below seem to be
the best that can be achieved by a median �lter. In the
third set we have used a test image containing �ne details.
Results of denoising show that our �lter performs better.

Figure 2: Test signal, noisy observation (SNR ' 1dB) and
the restored signal (SNR ' 13dB) superimposed

(a) (b)

(c) (d)

Figure 3: (a) Test image, (b) noisy observation (SNR '
2:6dB), (c) our method (SNR ' 11:5dB), (d) median �lter
(SNR ' 7:3dB)



(a) (b)

(c) (d)

Figure 4: (a) Test image, (b) noisy observation (SNR '
�2dB), (c) our method (SNR ' 8:5dB), (d) median �lter
(SNR ' 6dB)

(a) (b)

(c) (d)

Figure 5: (a) Test image, (b) noisy observation (SNR
' 6dB) (c) our method (SNR ' 9dB), (d) median �lter
followed by histogram equalization (SNR ' 6:4dB)

5. CONCLUSION

In this paper we have shown that removing singularities
can be achieved by simple �ltering. The �lter is obtained
by developing the observed signal in Riemann series expan-
sion and then truncating the series to the regular portion.
The spectrum of the truncated version will then factorize
into the spectrum of the original function and the denoising
�lter. The �lter happens to have an anti-causal exponential
impulse response which is separable in higher dimensions.

The advantage of this approach to other decompositions
such as wavelet transforms is that in Riemann series the
components are naturally characterizing di�erent orders of
H�older exponents (ie. di�erent orders of singular/regular
behaviours). On the other hand, since they are organized
in ascending order of regularity, a simple truncation can
separate the singularities.

However, notice that, in order to obtain a closed form
solution to our �lter, we had to make two main assump-
tions: (1) that the singularities were isolated, (2) that the
regular portion was analytic. The latter assumption may
smooth some of the singularities that are needed to be pre-
served. Nevertheless, the results of simulations for noise
suppression demonstrate the superiority of our �lter com-
pared to the classical median �lter. The performance of the
�lter is particularly standing out in very low SNR or when
the noise power is higher than that of the signal.
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