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ABSTRACT

Some wavelet-based methods for signal estimation in the
presence of noise are reviewed in the context of the parsi-
monious representation of the underlying signal. Three ap-
proaches are considered. The first is based on the applica-
tion of the MDL principle. The robustness of this method is
improved in the second approach, by relaxing the assump-
tion of known noise distribution following Huber’s work. In
the third approach, a Bayesian strategy is adopted in order to
incorporate prior information pertaining to the signal of in-
terest; this method is especially useful at low signal-to-noise
ratios.

1. INTRODUCTION

Model parsimony has been of growing interest to researchers
in recent years, motivated by factors as diverse as storage in
computer memory, computational efficiency, and communi-
cation.

The proposed techniques are many, each entailingheuris-
tics and allowing interpretations proper to a particular ap-
plication. As a result, the common theme uniting these dif-
ferent approaches sometimes seems hopelessly inaccessible.
Nevertheless, it is possible to cast many of these application-
specific methodologies as problems of “regularization”.

It is often desired to limit the number of degrees of free-
dom in inverse problems by assuming a prior and thereby
mitigating their ill-posedness. In pattern recognition, one is
typically interested in the most parsimonious model that cap-
tures whatever information in the data is deemed essential,
while a penalty for model mismatch plays the role of a prior
for model parameters.

In this paper, we discuss several wavelet-based methods
for signal estimation in the presence of noise, within the con-
text of the parsimonious representation of the underlyingsig-
nal. We show in particular that Rissanen’s Minimum De-
scription Length (MDL) principle can be applied to wavelet

reconstructions to determine the complexity of the signal rep-
resentation, i.e. to choose which coefficients to include in
the reconstruction, and which to dismiss as noise.

The paper is organized as follows: Section 2 presents the
problem statement. In Section 3, we highlight the impor-
tance of model parsimony to the signal denoising problem.
In Section 4, we describe two information-theoretic meth-
ods for signal estimation via MDL. Finally, in Section 5, we
discuss a statistical approach that permits the introductionof
prior information on the signal of interest when its is embed-
ded in high-intensity noise.

2. PROBLEM STATEMENT AND NOTATION

The estimation problem of interest in this paper assumes the
following observation model:

x(t) = s(t) + n(t); (1)

where s(t) is an unknown signal corrupted by the zero-mean
noise process n(t).

The underlying signal is modeled as an orthonormal ba-
sis representation,

s(t) =
X
i

Cs
i i(t);

which in turn leads to the working model

Ci = Cs
i +Cn

i ; i 2 f1; � � � ;Kg; (2)

where Ci are the corrupted coefficients. In many cases, the
noise coefficientsCn

i can be assumed independent; they sha-
re the same second-order statistical properties as n(t), when
this is a white noise sequence. Our problem is to recover
or reconstruct s(t) from the orthogonal transform of the ob-
served process x(t).



3. PARSIMONY AND DENOISING

The unitary transformation of a process afforded by the wa-
velet decomposition provides a complete statistical charac-
terization of that process in the transform domain. The fact
that the properties of the underlying signal and of the conta-
minating noise are well characterized, together with the or-
thogonalityof the transform (which maximally removes any
redundancy), suggest the potential efficiency of this approach
for the statistical separation of signal and noise. An addi-
tional feature of this transformation, which in many cases
turns out to be crucial, is the property of vanishing moments
of the basis functions. This property tends to concentrate en-
ergy into very few dimensions. If the noise is white, then a
subset of the dimensions will represent mostly signal, and
the identificationof this subset is very reminiscent of the mo-
del order identification problem, where space is partitioned
into what might be referred to as the signal subspace and the
noise subspace,

C = Cs � Cn : (3)

This subspace identification can also be carried out objec-
tively through the likelihood ofC. A model prior on the pa-
rameters must now be assigned first to reduce the class of
possible models, and to account for model mismatch [7]:

L (C;K; P ) = � log p(C j Cs) + �(K;P );

whereK and P are respectively the data length and the num-
ber of signal dimensions. Rissanen refers to L as descrip-
tion length which, upon minimization, represents the coding
length of the observed series fCig. This coding parsimony,
together with the model summarizing the pertinent informa-
tion underlying the process, form the basis of an interesting
methodology developed over the last few years and retraced
below with the rationale and hindsight afforded by time.

4. AN INFORMATION-THEORETIC APPROACH

In what follows, we assume that the underlying signal s(t)
is a deterministic but unknown signal in L2(R). For the con-
taminating noise, we consider two cases:

� The probability density function of the contaminating
noise is assumed to be known.

� The probability density function of the contaminating
noise is unknown, but belongs to a known class; the
worst-case scenario is sought withina minimax frame-
work [8].

4.1. Coding for Denoising

The property of wavelets of concentrating energy into rela-
tively a few coefficients and its inability to achieve that with

noise, simplifies our formulation of the denoising problem
as one of compression. The efficiency of the resulting solu-
tion is qualitatively and quantitatively reflected by the MDL,
whose rationale is to seek and determine the shortest cod-
ing length of a data sequence fCig1�i�K which best sum-
marizes the relevant information embedded in the observed
process. Recall the coefficients are assumed independent.
It then follows that their joint probability density function
(pdf) is,

exp

 
�

KX
i=1

'i(Ci �Cs
i )

!
where 'i is a known “potential” function. For instance, by
choosing

'i(u) =
juj�i

�ii

� log(
�i

2
i�(1=�i)
) ; (4)

an exponential-powerdistributionis obtained with (�i; 
i) 2
(R�+)

2. The Gaussian distribution corresponds to �i = 2
and the Laplacian distribution to �i = 1. Note that differ-
ent functions'i can be chosen so as to take into account, for
example, different statistics of the noise at each scale. The
above pdf can be viewed as a function p(C1; : : : ; CK j �)
where the parameter vector is given by

� = (i1; : : : ; iP ; C
s
i1; : : : ; C

s
iP ) ; (5)

P being the number of “principal directions” of the sequence
fCs

i g1�i�K, which is assumed to satisfy

Cs
il 6= 0 iff 1 � l � P : (6)

The unknown parameters are theP coefficients fCs
il
g1�l�P

and their respective locationsfilg1�l�P for which one could
search the maximum of the likelihoodhypersurface. While a
direct and naive approach of maximizing the likelihoodfunc-
tion would generally maximize P , the solution provided by
the MDL criterion attaches a regularizing penalty to lead to

L(C1; : : : ; CK; �; P ) = � log p(C1; : : : ; CK j �)
+

1

2
(2P ) logK : (7)

Proposition 1. If the functions 'i are such that

8u; 'i(u) � 'i(0) ;

TheP coefficientsCs
i1 ; : : : ; C

s
iP which, based upon the MDL

method, give the optimal coding length of x(t), are determined
by the componentsCi which satisfy the following inequality:

'i(Ci) > log(K) + 'i(0)

In the exponential-power case, the above inequality re-
duces to a hard thresholding policy:

j Ci j> 
i (log(K))1=�i : (8)



Furthermore, the resulting minimal code length is

L�(C1; : : : ; CK) =
KX
i=1
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jCij�i

�ii

; log(K)

!
�

log(
�i

2
i�(1=�i)
)

�
: (9)

This provides an interesting criterion for best basis search of
signals embedded in (possibly non-Gaussian) noise.

4.2. Robust Representation

While the assumption that all the statistical characteristics of
the noise are known may hold in few practical cases, its an-
alytical tractability and appealing closed form results have
been the root casue of its popularity. To bring us closer to
practical scenarios, we follow Huber’s approach by assum-
ing that our noise distribution comes from a class of distri-
butions P" = f(1 � ")� + "G : G 2 Fg, where � is the
standard normal distribution,F is the set of all distribution
functions, and " 2 (0; 1) is a known fraction of contamina-
tion.

Prior to determining the coding length, we have to iden-
tify the model in P" for our observed data. For a given un-
derlying signal whose representation has a fixed number of
components, the expected MDL is the entropy plus a con-
stant independent of the prevailing distributionand of the es-
timator. In accordance with the minimax principle we seek
the least favorable noise distribution and evaluate the MDL.
This is tantamount to simultaneouslymaximizing the entropy
over P" and minimizing over the set of all estimators S. In-
terestingly, the least favorable distribution inP" which max-
imizes the entropy coincides with that which maximizes the
asymptotic variance and derived by Huber [2]. For a stan-
dard normal density with variance �2 we have the following
result:

Proposition 2. The least favorable distributionpH (c) inP"
which maximizes the entropy is

pH (c) =

8<:
(1� ")�(a)eac+a

2

c � �a
(1� ")�(c) jcj < a

(1� ")�(a)e�ac+a
2

a � c (10)

where � is the standard univariate normal density and a is
related to " by the equation

2

�
�(a)

a
� �(�a)

�
=

"

1� "
: (11)

The density is normal in the center and Laplacian on the
tails. On the other hand, the Maximum Likelihood estima-
tor minimizes the entropy which then leads to the notion of
MinMax description length.

Proposition 3. Huber’s distribution pH together with the
MLE based upon it, �̂H , result in a minimax MDL, i.e. they
satisfy a saddle-point condition.

Using an exactly similar approach as that of the Gaussian
distribution, the minimax description length leads to the fol-
lowing thresholding rule:
Case 1 When logK > a2

2�2
, the coefficient estimate is set to

zero when

1

�2

�
�a j Ci j +

a2

2

�
+ logK > 0 (12)

which implies that

j Ci j < a

2
+

�2

a
logK (13)

Case 2 When logK < a2

2�2
, the coefficient estimate is set to

zero when

C2
i

2�2
< logK (14)

which implies that

j Ci j < �
p

2 logK (15)

This is the traditional threshold proposed by [1] and [3].

5. BAYESIAN APPROACH

The above approaches have been demonstrated to lead to good
results in relatively moderate noise scenarios and have been
successfully applied in a variety of settings. They are, how-
ever, based upon threshold values which present two draw-
backs:

� They are directly dependent upon the noise variance
without regard to the signal characteristics.

� They grow without bound with the data record length.

In some applications these shortcomings may greatly reduce
the performance of the forementioned methods in retrieving
the underlying signal. Fortunately, some prior information
about the signal is often available, and it is thus natural to
investigate its utility to regularize the estimation problem at
hand.

Let the probability distributions of Cs and Cn be de-
noted respectively by f and p where the forms of functions
f and p are assumed to be known. An estimate of Cs can
be obtained by the following Maximum a Posteriori (MAP)
estimate

bCs = argmin
Cs

[� log p(C �Cs)� logf(Cs)] :
(16)



By comparing this approach with the MDL approach, we see
that the regularizing term now takes a more elaborate form
allowing us to account for probabilisticprior information we
may have about the signal of interest. Interestingly, it can be
proved that many thresholding rules may be included within
this framework [9]. For instance, if the noise components
are i.i.d. Gaussian and the signal components are i.i.d., zero-
mean and have a Laplacian distribution, a soft thresholding
policy allows us to recover the signal. The threshold value
is however independent of the data lengthK as it is equal top
2�2=�s where �2 and�2s denote respectively the variances

ofCn
i andCs

i . To better take into account the expected spar-
sity of the components of the signal of interest, some more
appropriate priors can be chosen. Gaussian mixtures con-
stitute such valuable statistical models. For example, in the
presence of i.i.d. Gaussian noise, the Bernoulli-Gaussiandis-
tribution (which is a degenerate Gaussian mixture) leads to
an estimate which is a tradeoff between a Wiener and a thresh-
olding estimator [6]. The estimated components then read

bCs
i =

(
�2
i

�2
i
+�2

Ci if jCij > �i

0 otherwise
(17)

where �2i is the variance of the nonzero values of Cs
i and �i

is a threshold value depending on�2, �2i and the mixture pa-
rameter. The interest of this Bayesian approach is shown in
Fig. 1.

An important problem when dealing with this Bayesian
approach is the estimation of the parameters of the model.
Different algorithms can be envisaged, such as the General-
ized Maximum Likelihoodmethod or non-standard forms of
the EM algorithm [5]. A fully Bayesian approach can also be
adopted where priors are introduced on the parameters and
one resorts to MCMC algorithmes in order to build an er-
godic Markov chain whose equilibrium is the posterior dis-
tribution of interest [4]
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