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ABSTRACT

Some wavel et-based methodsfor signal estimationinthe
presence of noise are reviewed in the context of the parsi-
monious representation of the underlying signa. Three ap-
proaches are considered. The first is based on the applica-
tion of the MDL principle. The robustness of thismethod is
improved in the second approach, by relaxing the assump-
tion of known noise distributionfollowing Huber’swork. In
thethird approach, a Bayesian strategy isadopted inorder to
incorporate prior information pertaining to the signd of in-
terest; thismethod isespecially useful at low signal-to-noise
ratios.

1. INTRODUCTION

Model parsimony hasbeen of growinginteresttoresearchers
in recent years, motivated by factors as diverse as storagein
computer memory, computationa efficiency, and communi-
cation.

The proposed techniquesare many, each entailingheuris-
tics and alowing interpretations proper to a particular ap-
plication. Asaresult, the common theme uniting these dif-
ferent approaches sometimes seems hopel essly inaccessible.
Nevertheless, it ispossibleto cast many of these application-
specific methodol ogies as problems of “regularization”.

Itisoften desired to limit the number of degrees of free-
dom in inverse problems by assuming a prior and thereby
mitigating their ill-posedness. In pattern recognition, oneis
typically interestedin themost parsimoniousmodel that cap-
tures whatever information in the data is deemed essentidl,
whileapenalty for model mismatch playstherole of aprior
for model parameters.

In this paper, we discuss several wavel et-based methods
for signal estimationinthe presence of noise, withinthe con-
text of the parsimoni ousrepresentati on of theunderlyingsig-
nal. We show in particular that Rissanen’s Minimum De-
scription Length (MDL) principle can be applied to wavel et

reconstructionsto determinethe compl exity of thesignal rep-
resentation, i.e. to choose which coefficients to include in
the reconstruction, and which to dismiss as noise.

The paper isorganized asfollows. Section 2 presentsthe
problem statement. In Section 3, we highlight the impor-
tance of model parsimony to the signal denoising problem.
In Section 4, we describe two information-theoretic meth-
odsfor signal estimationviaMDL. Finally, in Section 5, we
discussa statistical approach that permitstheintroduction of
prior informationon thesignal of interest when itsisembed-
ded in high-intensity noise.

2. PROBLEM STATEMENT AND NOTATION

The estimation problem of interest in this paper assumes the
following observation model:

z(t) = s(t) + (1), ey

where s(¢) isan unknown signal corrupted by the zero-mean
noise process n(t).

The underlying signal ismodeled as an orthonormal ba-
sis representation,

()= 32 G,

which in turn leads to the working model

C,=C;+Cr, died{l,--- K}, (2
where C; arethe corrupted coefficients. In many cases, the
noisecoefficients C7* can be assumed independent; they sha-
re the same second-order statistical propertiesasn(t), when
this is a white noise sequence. Our problem is to recover
or recongtruct s(¢) from the orthogonal transform of the ob-
served process z(¢).



3. PARSIMONY AND DENOISING

The unitary transformation of a process afforded by thewa

velet decomposition provides a complete satistical charac-

terization of that processin the transform domain. The fact

that the propertiesof the underlying signal and of the conta:

minating noise are well characterized, together with the or-

thogonality of thetransform (which maximally removes any

redundancy), suggest the potential efficiency of thisapproach
for the statistical separation of signa and noise. An addi-

tional feature of this transformation, which in many cases
turnsout to be crucia, isthe property of vanishing moments
of thebasisfunctions. Thisproperty tendsto concentrate en-

ergy into very few dimensions. If the noise is white, then a
subset of the dimensions will represent mostly signal, and

theidentification of thissubset isvery reminiscent of themo-

del order identification problem, where space is partitioned
intowhat might bereferred to as thesignal subspace and the
noi se subspace,

This subspace identification can aso be carried out objec-
tively throughthelikelihood of C'. A mode prior on the pa-
rameters must now be assigned first to reduce the class of
possible model's, and to account for model mismatch [7]:

L(C,K,P)=—logp(C | C;,)+ a(K,P),

where K and P arerespectively thedatalength and thenum-
ber of signal dimensions. Rissanen refersto £ as descrip-
tion length which, upon minimization, represents the coding
length of the observed series {C; }. This coding parsimony,
together with the model summarizing the pertinent informa:
tion underlying the process, form the basis of an interesting
methodol ogy devel oped over the last few years and retraced
bel ow with the rational e and hindsight afforded by time.

4. AN INFORMATION-THEORETIC APPROACH

In what follows, we assume that the underlying signal s(t)
isadeterministicbut unknownsignal in L?(IR ). For the con-
taminating noise, we consider two cases.

o Theprobability density function of the contaminating
noiseis assumed to be known.

o Theprobability density function of the contaminating
noise is unknown, but belongs to a known class; the
worst-case scenario i ssought withinaminimax frame-
work [8].

4.1. Codingfor Denoising

The property of wavelets of concentrating energy into rela-
tively afew coefficients and itsinability to achieve that with

noise, simplifies our formulation of the denoising problem
asone of compression. The efficiency of the resulting solu-
tionisqualitatively and quantitatively reflected by the M DL,
whose rationale is to seek and determine the shortest cod-
ing length of a data sequence {C} }1<;<x which best sum-
marizes the relevant information embedded in the observed
process. Recall the coefficients are assumed independent.
It then follows that their joint probability density function

(pdf) is,
K
exp (— Z i (Cy — C'f))
i=1

where ¢, isaknown “potential” function. For instance, by
choosing

| Bi
#iv) P log(Q%T(l/ﬁi)
an exponential-power distributionisobtainedwith (5;, ;) €
(R7%)?. The Gaussian distribution correspondsto 3; = 2
and the Laplacian distributionto 5; = 1. Note that differ-
ent functionsy; can be chosen so asto takeinto account, for
example, different statistics of the noise at each scale. The

) (4)

above pdf can be viewed as a function p(C4,... ,Ck | ¢)
where the parameter vector is given by
¢=(i1,...,ip,C;,...,C}.), (5)

P beingthe number of “principa directions’ of the sequence
{C} hi<i<k, Whichis assumed to satisfy
Ci#0 iff 1<I<P. (6)

Theunknown parameters arethe P coefficients {C }1<i<p
and their respectivelocations{i; } <;< p for which onecould
search the maximum of thelikelihood hypersurface. Whilea
direct and naive approach of maximizingthelikelihoodfunc-
tion would generally maximize P, the solution provided by
the MDL criterion attaches a regularizing penalty to lead to

L(Cy,...,Cg,(,P)=—logp(C1,...,Cr | ¢)
+ %(QP)logK. (7
Proposition 1. If the functions ¢; are such that
Vu,  @i(u) > ¢i(0),

The P coefficientsC; , ..., ', which, based upontheMDL
method, givetheoptimal codinglength of x(t), are determined
by the components C’; whi ch satisfy thefollowinginequality:

i(Ci) > log(K) 4 ¢i(0)

In the exponential-power case, the above inequality re-
duces to a hard thresholding policy:

| Ci 1> i (log(K )P+ . (8)



Furthermore, the resulting minimal codelengthis

K [eALE
[,*(Cl,...,CK):Z(min( Zﬁ, ,log(K)) —
i=1 Y

Bi )

log(———+—=)] . (9

Thisprovidesan interesting criterion for best basis search of
signals embedded in (possibly non-Gaussian) noise.

4.2. Robust Representation

Whiletheassumption that all the statistical characteristics of
the noise are known may hold in few practical cases, itsan-
alytical tractability and appeding closed form results have
been the root casue of its popularity. To bring us closer to
practical scenarios, we follow Huber's approach by assum-
ing that our noise distribution comes from a class of distri-
butionsP, = {(1 —)® + <G : G € F}, where ® isthe
standard normal distribution, F isthe set of al distribution
functions, and ¢ € (0, 1) isaknown fraction of contamina-
tion.

Prior to determining the coding length, we have to iden-
tify the model in P, for our observed data. For a given un-
derlying signal whose representation has a fixed number of
components, the expected MDL is the entropy plus a con-
stant independent of the prevailing distributionand of thees-
timator. In accordance with the minimax principle we seek
theleast favorabl e noi se distribution and evaluate the MDL.
Thisistantamount to simultaneously maximizing theentropy
over P. and minimizing over the set of al estimatorsS. In-
terestingly, theleast favorable distributionin P, which max-
imizes the entropy coincides with that which maximizesthe
asymptotic variance and derived by Huber [2]. For a stan-
dard normal density with variance o we have the following
result:

Proposition 2. Theleast favorabledistributionpg (¢) in/P.
which maximizesthe entropy is

(1-e)d(a)e*t® ¢ < —a
(1—-¢)g(e) le] < a
(1—e)p(a)e™ e a<e (10)

pr(c) =

where ¢ isthe standard univariate normal density and a is
related to £ by the equation

2 <@ - d)(—a)) = (11)

a 1—¢

The density isnormal in the center and Laplacian on the
tails. On the other hand, the Maximum Likelihood estima-
tor minimizes the entropy which then leads to the notion of
MinMax description length.

Proposition 3. Huber’s distribution py together with the
MLE based uponiit, #r, result in a minimax MDL, i.e. they
satisfy a saddle-point condition.

Using an exactly similar approach asthat of the Gaussian
distribution, the minimax description length leadsto thefol -
lowing thresholding rule:

CaselWhenlog K > % the coefficient estimateis set to
zero when

1 a? R
— |—a|Ci| +— ) + logK > 0 (12)
o 2

which impliesthat

2
1Ci 1< = + Zlogk (13)
2 a
Case2Whenlog K < %,thecoefficient estimateis set to
zero when
2
5og < logh (14)

which impliesthat

| Ci | < ov/2log K (15)

Thisisthe traditional threshold proposed by [1] and [3].

5. BAYESIAN APPROACH

The above approacheshave been demonstrated tolead to good
resultsin relatively moderate noise scenarios and have been
successfully applied in avariety of settings. They are, how-
ever, based upon threshold values which present two draw-
backs:

e They are directly dependent upon the noise variance
without regard to the signal characteristics.

¢ They grow without bound with the datarecord length.

In some applicationsthese shortcomings may greatly reduce
the performance of the forementioned methodsin retrieving
the underlying signa. Fortunately, some prior information
about the signal is often available, and it is thus natura to
investigate its utility to regularize the estimation problem at
hand.

Let the probability distributions of C; and C,, be de-
noted respectively by f and p where the forms of functions
f and p are assumed to be known. An estimate of C; can
be obtained by thefoll owing Maximum a Posteriori (MAP)
estimate

o~

C; = argmin[—logp(C — C,) —log f(C5)].



By comparing thisapproach withthe MDL approach, we see
that the regularizing term now takes a more elaborate form
allowing usto account for probabilisticprior informationwe
may have about the signal of interest. Interestingly, it can be
proved that many thresholding rules may beincluded within
this framework [9]. For instance, if the noise components
arei.i.d. Gaussian and the signal componentsarei.i.d., zero-
mean and have a Laplacian distribution, a soft thresholding
policy alows us to recover the signal. The threshold value
is however independent of the datalength K asitisequal to
V20? /o, whereo? and o2 denoterespectively thevariances
of C7" and C} . To better takeinto account the expected spar-
sity of the components of the signa of interest, some more
appropriate priors can be chosen. Gaussian mixtures con-
stitute such valuable statistical models. For example, in the
presenceof i.i.d. Gaussian noise, theBernoulli-Gaussiandis-
tribution (which is a degenerate Gaussian mixture) leads to
an estimatewhich isatradeoff between aWiener and athresh-
olding estimator [6]. The estimated components then read

0_2
;= mHCi
0

where o7 isthe variance of the nonzero values of C¥ and x;
isathreshold valuedepending on o2, o? and the mixture pa-
rameter. The interest of thisBayesian approach is shownin
Fig. 1.

An important problem when dealing with this Bayesian
approach is the estimation of the parameters of the modd.
Different algorithms can be envisaged, such asthe General-
ized Maximum Likelihood method or non-standard forms of
theEM algorithm[5]. A fully Bayesian approach can also be
adopted where priors are introduced on the parameters and
one resorts to MCMC agorithmes in order to build an er-
godic Markov chain whose equilibrium isthe posterior dis-
tribution of interest [4]

if1Ci| > xi

. (17)
otherwise
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Figure 1: Comparison in terms of normalized mean square
error of the MDL method (dashed line) and a Bayesian
method (solid line) based on a B-G model as a function of
the standard deviation of the noise (Doppler signal decom-
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