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ABSTRACT

We address the deconvolution of MIMO linear mixtures.
The approach is based on the construction of a hierarchi-
cal family of composite criteria involving CM criterion and
second order statistics constraint. Altougth, the criteria are
based on fourth order statistics, we give a complete proof of
convergence of this structure. We show that each cost func-
tion leads to the restoration of one single source. Moreover
the approach is naturally robust with respect to the chan-
nels order estimation. An adaptive alorithm is derived for
the simultaneous estimation of all sources.

Keywords: Blind Adaptive Sources Separation, Constant
Modulus Criterion, Multiples Input/Multiples Outputs sys-
tems.

1. INTRODUCTION

The so-called signal separation problem of MIMO (Mul-
tiple Inputs / Multiple Outputs) linear convolutives mix-
tures arises in a wide variety of signal processing and com-
munications applications. It is a crucial issue in wireless
multi-users digital communication systems when the di�er-
ent users share parts of the same frequency band and are
received on an omni-directional antenna. The aim is to sep-
arate the incoming digital signals, arriving from di�erent or
possibly the same directions on multiple antennas and to
equalize the contribution of each user in order to restore
the transmitting signals. The restoration of multiple input
signals is also required when cross-polarization of two or-
thogonally polarized sources occurs due to multipath prop-
agation with �nite delay spread ([2]). In this case, we know
that the two sources are temporally and spatially mixed.

In most existing systems, a training sequence known by
the receiver, is periodically sent by the transmitter in order
to identify the unknown channel. However, the use of such
training sequences has some important known drawbacks.
The training sequence requires a non-neglectable amount
of the data rate and there is some applications where the
training scenario is not feasible ([4]).
In order to restore the input signal blindly (i.e. without

training) many contributions have been developed (see [9],
and other) mainly based on instantaneous mixtures. In the
convolutive case, very few results exist. One of the �rst con-
tribution which extend the equalizations tools to the more
general problem of MIMO deconvolution is addressed in [2]
and more recently in [3] (see also [8]). The approach con-
sists in an iterative subtraction of the estimated signal from

the mixture. In [6], a solution based on the same criterion
and additive constraint is proposed in the speci�c case of
instantaneous mixtures. A similar idea was independently
proposed by [10] and [8] in the convolutive case. Unfortu-
nately, only partial performances results are given and there
is no guarantee on the proposed composite criteria to avoid
undesirable convergence settings.

Based on our works on CM behavior ([1],[2]), we propose
a new design for blind mixtures deconvolution of MIMO
channels. We show that it is possible to construct a set
of composite criteria based on sparing constraints in order
to guarantee that all local minima of each criterion achieve
perfectly a single source restoration. E�cient stochastic
adaptive algorithm is presented. The complete convergence
proofs are provided.

2. PROBLEM FORMULATION

We consider the MIMO linear convolutive mixture, where
the L-dimensional observation writes as:

y(n) = [H(z) ] s(n) (1)

we suppose that s(n) = (s1(n); ::; sP (n))
> is the signal

of interest of dimension P . The components sk(n) (re-
ferred as the kth source) are i.i.d., zero mean, sub-Gaussian
and mutually independent (A-1). We denote �2k the vari-
ance of each source sk(n). The channel transfer function
H(z) = (h1(z); :::; hP (z)) is a polynomial matrix of di-
mension L � P (with L > P ) such that Rg (H(z)) = P
for all z 2 jC (A-2). Each column (hk(z))k=1;P is a L-

dimensional function hk(z) = (h
(1)
k (z); :::; h

(L)
k (z))> where

h
(j)
k (z) =

PQk;j

p=0
hjk(p) (A-3). The degree of hk(z) is de-

�ned byQk=maxj=1;P Qk;j . Finally, we suppose thatH(z)
is a column reduced matrix, i.e., Rg (h1(Q1); ::; h1(QP ))=P
(A-4).

By collecting the observation y(n) in the regressor vector
YN(n) = (y(n)>; y(n�1)>; :::; y(n� (N +1))>)> of dimen-
sion NL, we get,

YN (n) =

PX
l=1

T (hl) Sl(n) (2)

where T (hl) is the Sylvester convolution matrix of dimen-
sion NL � (N + Qk), between the source sl(n) and the
L-dimensional sensors (see, [1]). Sl(n) = (sl(n); :::; sl(n �
(N+Qk+1)))

> is a vector of dimension N +Qk which con-
tains the contributions of the source sl(n). We assume that



N �
PP

k=1
Qk (A-5).

Since the mixture is linear, restoring M input signals sk
(with M � P ) turns to estimate M vectors (gk)1�k�M of
length NL such as,

f?>k
def
= g?>k �(H) = (fj1j;kj:::jfjlj;k j:::jfjP j;k)

> = uk

where uk is a canonical vector of of length K
def
= NP +PP

k=1
Qk selecting the kth source (up to a scaled arbitrary

permutation) with arbitrary delay. Under the key identi�a-
bility assumptions A-2,4,5 the convolution matrix �(H) is
full-column rank (see [7], for example). Thus, all global im-
pulse responses f>k = g>k �(H) are achievable, in particular
those leading to fjlj;k = �p

jlj;k
i.e. (0:::010::0) for l = k and

fjlj;k = 0N+Ql
for l 6= k, corresponding to the solution uk.

3. HIERARCHICAL CRITERIA

We investigate the estimation of the `equalizers vectors'
g?k. Under identi�ability conditions, we know, see Ap-
pendix, that `separating' solutions of the CM criterion

�c(gk) = E[
�
jvk(n)j

2�r
�2
], (where vk(n) = g>k YN (n) and

r an arbitrary dispersion constant) are described by:

f?1 = �
p
r=rl (0:::0j:::j 0::010::0| {z }

l

j:::j0:::0)

where rl
def
= E[s4l ]=E[s

2
l ] is the so-called constant dispersion

of the source number l. We denote F?
1 the subset of di-

mension 2N
P

k
2Qk of all separating vector f?1 and �F1 the

subset of all other extrema. Note that �c leads to perfect
restoration of one source, the drawback is the absence of
guarantee concerning multiple selection of the same source.
This motivates the following sections.

3.1. Criteria

We suggest to introduce a set of criteria (�k)1�k�M , ac-
cording to the following procedure:

�k((gs)s=1;k)
def
= �c(gk) + �k

k�1X
j=1

+TX
m=�T

Ek;j(m)

we take the convention �1((gs)s=1)
def
= �c(g1) for k = 1.

�c(gk) denotes herein the CM criterion. The criterion
Ek;j(m) = jE[vk(n)vj(n�m)]j2 is a quadratic function of
gk and gj based on second order statistics. Basically, it cor-
responds to a decorrelation constraint between all outputs
vk(n), for k = 1; :::;M and over all possible delays m corre-
sponding to T =N+maxk(Qk) . �k is a positive constant,
introduced to control the level of the constraint. It will be
characterized in the sequel.

This set of criteria is based on a `hierarchical' principle:
(a) Each criterion �j(g1; :::; gj) share j�1 parameter with
�j�1(g1; :::; gj�1). (b) From �j�1!�j a constraint is added.
Note that according to the whiteness assumptions A-1, it
is not necessary to know Qk accurately, an overestimation
of Qk is su�cient.
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Figure 1. Connections between �k for k = 1; 2; 3.

3.2. Extrema Analysis

An analytical analysis of (�k)1�k�M extrema is proposed
in this subsection, in the real case for sake of simplicity.

Let us point out that the extrema solutions of the criteria
�2 depend of the extrema solutions of �1 and so on, until
�M . Thus, to exhibit the solutions of �k we have to `plug'
all previous extrema solutions of (�s)s<k in �k.

In the sequel, we deal �rst with the separating solutions.
Note that if we introduce the solutions (F?

j )j<k in �k, the
characterization of the stationary points of criterion �k is
easily derivable, see next proposal (and Appendix).

Proposal 1 For f?j 2 F
?
j (1 � j � k� 1), the extrema

fk 2 Fk of �k are solutions of the equation:

2Ps�s(fk) fk + r�k
X

l2Ik�1

N+QlX
�=1

�4l
rl
fjlj;k(�) �� = 0K (3)

where Ik�1 is a subset of dimension k�1 which containt
the subscripts of all sources selected by criteria (�s)s<k. ��
denotes a canonical vector of length K with 1 on the (�+1)th

entry and 0k a null vector of same dimension.

The previous equation stems from a straightforward gradi-
ent derivation of criterion �k expressed in term of the global
impulse response fk = �(H)>gk, see [5] for details.

Moreover, one can give, the expression of the separating
solution (for which there is only one non-zeros components)
of �k, see next proposal.

Proposal 2 The separating solution f?k 2 F
?
k are described

by:

f?k =

(
�
q

r
rl
(1� �k

2�l
) ul for l 2 Ik�1 and;

�
p

r
rl
ul elsewhere

According to the previous result, one can remark that it
is always possible to select the level constraint �k in or-
der to avoid separating solutions given by previous criteria
(�s)s<k. We get the simple necessary condition,

�k � 2 �l (4)

where we recall that �l = E[s4l ]=E[s
2
l ]
2. Actually, for pre-

serving from multiple selection of the same source, we only
have to verify that each criterion has a level constraint such
as �k � 2 maxm=1;P �m. Note that at `each step ' k the
dimension of the separating set F?

k is reduced by 2N+Qj ,
where we recall that Qj is the degree of the channel `ex-
cited' by the jth source supposed selected at step k�1. The



iterative `plugging' scheme is illustrated in Figure 1, with
M=3.

From lack of space, we omit the analytical solution of the
`non-separating' solution belonging to �Fk (see, [5]). How-
ever, let us point out that it will be shown in the next
section, that the corresponding vector are necessarely un-
stable attractors ! We show moreover that the separating
solutions belonging to F�k are the only global minima.

3.3. Stability

We investigate the stability of the extrema fk by analyzing
the sign de�niteness of the Hessian matrix of each criterion
�k. The result is summarized in the next proposal.

Proposal 3 The extrema of criterion �k corresponding to
global minima must verify the condition:

T (H)	k((fs)s=1;k) T (H)> � 0 (5)

with 	k(:)
def
= 2	c(fk)+ �k	�(f1; :::; fk�1) where 	c(:) and

	�(:) are symmetric matrices of dimension K �K de�ned
respectively by,

	c(fk) = Ps�s(fk) + 6Psfkfk
>Ps +PsKs diag(fkf

>
k ) and,

	�((fs)s<k) =

+TX
m=�T

X
j<k

J(m)
s fjf

>
j J(m)>

s

where J
(m)
s is a bloc-diagonal matrix of dimension K �K

such that J
(m)
s = IP 
 (�21Jm;1; :::; �

2
PJm;P ) with Jm;k a

Jordan matrix of dimension (N +Qk)� (N +Qk) de�ned
as (Jm;k)a;b = 1 if a� b = m and 0 elsewhere.

Let us point out that, according to the particular `plugging'
design introduced above, the only two situations that must
be addressed are F?

k [ (F?
j )j�k and Fk [ (F?

j )j�k for the
subset stability analysis of each criterion.

Let us consider �rst the case where all extrema fj are be-
long (F?

j )j�k. From the hypothesis of sub-Gaussian input
signals (i.e. �k � 3), it is straightforward to check that 	k

is a diagonal matrix with positive terms. Indeed, for i 6= l
we get 	c(f

?
k )jij = �2i (3��l)

r
rl
IN+Qi . For the bloc l, the di-

agonal components of the bloc-matrix 	c(f
?
k )jlj are equal to

�2l (3��l)
r
rl

or 2�2l r. 	� is a diagonal matrix for which the

non-zeros components take the form �4j r=rj . Thus, the in-
equality (5) is always veri�ed and the correspondings points
f?k are global minima.

In the second case, we consider the extrema point f?j 2
(F?

j )j<k and fk 2 �Fk. 	� is a positive diagonal matrix
and 	c is a sparse symmetric matrix. The analysis of the
sign of 	c is not straightforward excepted in the trivial case
fk = 0, which is maximum since 	k(0) = �rPs. For the
other extrema fk 2 �Fk the non diagonal contributions of 	c

are of the form (	c(fk))ij = �6�
2
i �

2
j!i!j or 0, for which

some terms !j are equal to !j (see Lemma 2). We can also
verify that the diagonal contributions are positive. (From
lack of space it is impossible to give here all the details of
the di�erents contributions, see [5]). Due to the particular
form of 	c we can derive an analysis of the quadratic form
associated to 	k, the result is given in the next proposal.

Proposal 4 If fk 2 �Fk, for any vector x of dimension K,
we have the following decomposition,

x>	k(fk; (f
?
s )s<k)x =

X
k

�kx
2
k +

X
i;j

x>ijBijxij

where the �k denotes positives terms and Bij a ma-
trix of dimension 2 � 2 of negative determinant jBij j =
4�4i �

4
j!

2
i!

2
j (�i�j � 9). The notation xij introduced above

denotes the vector (xixj) of dimension 2 extracted from x.

Thus we can easily verify that there is some vector �x such
that �x>	k�x =

P
k
�kx

2
k � 0 and vectors x such that

x>	k x =
P

i;j
x>ijBijxij � 0 which proof that fk is a sad-

dle point. See Figure 2 for the location of the extrema.

s
2

|| f ||

Minima

U k
U k+1

0

Saddle points

U1

Maximum

Figure 2. Location of the extrema.

4. ALGORITHM

An adaptive algorithm for minimizing the criteria
(�k)1�k�M stems naturally from the design introduced in
Sect 3.1.

For each function �k((gs)s=1;k), we propose to derive a sim-
ple gradient descent algorithm according to the scheme:

g
(t+1)
k  g

(t)
k � �rgk�k

�
g
(t)
k =(g(t+1)s )s<k

�
(6)

with � a small positive step-size. The gradient is given by
the expression,

rgk�k(gk) = rgk�c(gk) + �k

k�1X
j=1

+TX
m=�T

rgkEk;j(m) (7)

We get, rgk�c(gk) = 4
�
jvk(n)j

2�r
�
vk(n)Y

�
N (n) and,

rgkEk;j(m) = 2 (g>k R̂Y(m) gj) R̂
�
Y(m) g�j with vk(n) =

g>k YN (n) and where R̂Y (m) denotes the estimation of co-

variance matrix E
�
YN(n)Y

�
N (n�m)>

�
. The matrix R̂Y (m)

may be estimated by a recursive procedure, for instance.
Actually, the important point herein is to notice that the
asymptotic convergence points (in mean) of the algorithm
are exactly the extrema of the criteria (�k)1�k�M if the es-

timator R̂Y is unbiased. For more details see [5]. Therefore,
we know that (6) converge to the desired separating points.

5. SIMULATIONS

Since the convergence proof is established, we give just an
illustrative example in this section (see [5] for extensive sim-
ulations). The simulations were performed with a channel
H(z) driven by two BPSK sequence (�1). The zeros loca-
tion of hij(z) are display in Table I.



Zeros locations of the channel

h11(z) -22.9968 -0.4007
h21(z) -0.0597- 0.6147i -0.0597+ 0.6147i
h31(z) -0.2605- 1.1492i -0.2605+ 1.1492i

h12(z) -0.3139- 0.8746i -0.3139+ 0.8746i
h22(z) -0.6007- 0.8939i -0.6007+ 0.8939i
h32(z) -0.1137- 0.4419i -0.1137+ 0.4419i

Table I

We select N = 4. One may easily check that H(z) veri�es
the identi�ability conditions. The step size is selected to
� = 0:01 for the two updating equations. The receivers
g1 and g2 are initialized respectively with �3 and �10. We
take �1 = �2 = 2. The covariance matrices are estimated
recursively, with a forgetting factor � = 0:98.

We plot, for several realizations, the trajectories of the
residual ISI concerning the estimation of each source (see
Figure 3). At convergence (t = 3000), we plot the global
impulse response f?1 and f?2 (see Figure 4). In this case,
the associated receivers g?1 and g?2 achieve respectively the
restoration of s1 and s2 with delays �=4 and �=6.

A APPENDIX

In this appendix, we give the main results concerning the
derivation of �c extrema points. In Lemma 1, we give the
gradient equation characterization. The analytical expres-
sion of the extrema is derived in Lemma 2. A location of
the extrema, in terms of global impulse response space, is
given in Lemma 3.

Lemma 1 The gradient the CM in term of the global im-
pulse response f = �(H)> g writes as:

rg�c(g) = 4T (H)Ps�s(f)f (8)

where �s(f) = (3kfk2s�r)I + Ksdiag(ff
>) is a diagonal

matrix where diag(A) denotes the matrix extracted from A
with the same diagonal entries and 0 elsewhere. Herein
kfkk

2
s is understood as,

kfkk
2
s

def
=

PX
j=1

�2j kfjjj;kk
2
2 (9)

where kfjjj;kk
2
2 =

PN+Qj

p=1
fjjj;k(p)

2. Ps and Ks denotes

two bloc-diagonal matrix of dimension K � K de�ned as
Ks = IP 
 (K1; :::;KP ) with Ki = (�i � 3) IN+Qi and �i=
E[s4i ]=E[s

2
i ]
2. As the same way as Ks, we have Ps = IP 


(P1; :::;PP ) with Pi = �2i IN+Qi .
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Figure 3. ISI versus iterations number.

Lemma 2 If we denotes fc = (fc>j1j j:::jf
c>
jlj j:::jf

c>
jP j)

>, the
extrema points of �c (i.e. the solutions of the equation
Ps�s(f)f = 0), then we have

fcjlj =

8<
:
P

p�Il
�!l �

p

jlj
with !2l =

r

�2
l
(�l�3)+3

P
k
�k

�2
l
(�l�3)

�2
k
(�k�3)

or 0N+Ql

where Il
def
= f0; 1; :::; N+Ql�1g and �k denotes the number of

non-zeros components in each sub-vector fcjkj. Moreover, it

is understood that �p
jlj

and 0N+Ql are respectively canonical

vector (with non zero components at the (p + 1)th entry)
and null vector of dimension N +Ql.

The notation p � Il is referred to a summation over all
element of the subset p included in Il.

Lemma 3 The set of all extrema points corresponding to
the points fc 6= 0 verify, r

3
� kfck

2
s � minl

r
rl
.
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Figure 4. f1 and f2 at convergence.


