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ABSTRACT

The improved convergence speed and tracking properties of
fractionally-spaced equalizers are analyzed. We consider in
particular the effect of a frequency offset between the trans-
mitter baud rate and the receiver sampling clock that in-
duces important time-variations. We show that a fractionally-
spaced equalizer can handle the intersymbol interferences
(ISI) induced when the propagation channel doesn’t intro-
duce too much ISI.

Keywords : Fractionally-spaced equalization, tracking,
sampling frequency offset.

1. INTRODUCTION

Recent gathering and categorization of wideband communi-
cations received on a mobile vehicle have shown some dif-
ficulties due to a small frequency offset between baud and
sampling clocks, [2]1. The resulting timing error, yielding
to a ”pulse shape drift” phenomenon, is bearable for most
cases of mild channel time-variations. However, when the
channel is difficult to estimate/equalize, the drift may pre-
vent from a good estimation of the channel.

In this paper our goal is to analyze the tracking capa-
bilities of the fractionally-spaced equalizer(FSE) when
a sampling frequency offset occurs. Our study is limited
to baseband signals after demodulation (supposed correct)
has been performed. The frequencies of the receiver and
the transmitter clocks differ one from the other by a small
amount, possibly due to electronic defficiency or to a fre-
quency estimation error. The offset is assumed to have a
given value, we are not trying here to further remove it.

At first, we consider the case of a white gaussian addi-
tive channel noise (i.e., no channel dispersion) so that the
equalizer’s only goal is to track the pulse drift. This can
be done by a short rapidly varying equalizer at the cost

1The authors would like to thank Applied Signal Technology Inc. (Sun-
nyvale, CA, USA) and Cornell University - Blind Equalization Research
Group (CU-BERG) for providing the data files. These data files should
soon be avaliable athttp://spib.rice.edu/spib.html .

of a high residual variance. Afterwards, we add the effect
of propagation, i.e., slowly time-varying measured channel
dispersion caracteristics. The fast convergence properties
of FSEs are measured. The importance of channel dispar-
ity, defined as the effective diversity [3], is enhanced. The
question is: how robust is the fractionally-spaced equalizer
to the system time-variations ?

2. PROBLEM SETTING

Let us consider the received baseband data signaly(t) de-
scribed as

y(t) =
X
k

skh(t� kT ) + w(t) (1)

h(t) modelizes the convolution of the pulse shaping filter,
the communication channelc(t) and the receiver matched
filter. The received signal is the result of the convolution
betweenh(t) and the transmitted data symbolssk. w(t) is
an additive, white Gaussian noise.sk is drawn from an al-
phabet of M values with equal probability. Thesk represent
an i.i.d sequence, with variance 1.

In order to study only the effect of the frequency sam-
pling offset, we assume that the band-limited channel is
ideal, i.e. the channel causes no ISI. If the received sig-
nal is sampled at a ratefrac1T + � where� is the timing
offset error, the expression becomes

y(nT+n�) = snh(n�)+
X
k 6=n

skh((n�k)T+n� )+w(nT+n�)

(2)
Even if the sequenceh(nT ) satisfies the Nyquist condition,
the values sampled with a frequency offset do not verify this
condition. Moreover, (2) is no longer a convolution as it is
when� = 0. It is as if we had a time-varying channel.



3. EFFECT OF A TIMING OFFSET

3.1. Effect on signal

To understand how the offset influences the received signal,
we study numerically the evolution of the sampledh(t) ver-
sus time for a given offset. To do so, we choose the raised
cosine pulse shaping filter which is widely used in the prac-
tice.h(t) is defined by

h(t) = sinc[
t

T
]
cos[�� t

T
]

1� 4�2t2

T 2

(3)

where� is the roll-off factor. At the instantn(T + �), we
can consider (2) as if we had an instantaneous convolution
of the inputsk with h((n� k)T + n�), denotedhn(k),

hn(k) = sinc[(n � k) + n
�

T
]
cos[��((n� k) + n �

T
)]

1�
4�2((n�k)+n �

T
)2

T2

(4)

0 20 40 60 80 100 120 140 160 180
−0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de
 o

f h
(t

)

Iterations

Figure 1: Evolution ofhn(k) versusn, for �
T
= 0:01

Figure (1) represents the shape ofhn(k) versus the in-
stantn. The curves are drawn every10T . As long asn�
is small, the clock samples always around the peak of the
cardinal sine function. But as times goes by, the value of
n� becomes more and more important and consequently
the influence of the offset becomes effective. Because of
the offset, we get a succession of deformed cardinal sines
which are no more systematically centered around the de-
sired value. The curves move away from the desired value
by a distance of the order ofn� . According to the sign of the
offset, the shifting of the distorded cardinal sine is retarded
or advanced versus the baud rate. We remark that the evo-
lution of the pulse is periodical with periodT

�
and affects

mainly the amplitude of the main taps. This phenomenon is
called timing drift or rolling.

For a large enoughn, the rolling causes a jump of one
bit or its repetition which distorts enormously the received
signal and disturbes the remaining parts of the receiver.

Note that the effect of the sampling frequency offset
remains the same when we sample with a fractional value
T+�
L

with L > 1.

3.2. The fractionally-spaced equalizer

In this paragraph, we want to know how the fractionally-
spaced equalizer (FSE) is affected by a residual sampling
frequency offset.

The temporal diversity (L > 1) can be modelized by
a multivariate system (see for instance [5]). In the time-
varying context, we can extend this multichannel and equal-
izer system to:

s(n)
���

hn(z) - �
?

wn(n)

...A
AU hn�L+1(z)- �

6
wn�L+1(n)

- gn(z)
A
AUL

- gn�L+1(z) �
��
-

x(n)= ŝ(n��)

Figure 2: Multi-Channel / Equalizer

where eachhn(z) is the instantaneous transfer function as-
sociated to the impulse responsehn(k). wi(n) = w(LnT+
i) is the sampled noise. The FSE processes theL-dimensionnal
received signal by:

x(n) =

N�1X
k=0

gky(n� k) = g>YN (n) (5)

whereg = (g>0 ; ::g
>
N�1)

> is the impulse response of the
equalizer. The length of the FSE is equal toNL with N

greater or equal to the channel degreeQ. YN (n) is the re-
gression vector which contains the observations at the in-
stantsn; n� 1; :::; n�N + 1.

YN (n) = T (hn)SN+Q(n) +WN(n) (6)

whereSN+Q(n) = (s(n); s(n�1); :::; s(n�N�Q+1))>

andT (hn) is defined by

2
4

hn(�K) :: hn(K) 0 � � � 0
0 hn�1(�K) :: hn�1(�K) � � � 0

.
.
.

0 � � � 0 hn�N+1(�K) :: hn�N+1(K)

3
5

(7)

wherehn(i) = h(i + n� + [n �
T
]) for i = [�K; :::K].

T (hn) is the matrix linked to theN transfer functionshi(z)
for i = [n � N + 1:::n]. This matrix depends on the time
because of the presence of the timing offset.



In the case of an ideal channel, the impulse responses
representing the pulse shaping and matched filter can be
modelized by a small number of taps. The effective2K
taps are centered around a value that followsn� , we take
[n� ] where[x] represents the integer value of x.

If � was zero,hn(i) = hn�1(i);8n � 0, so thatT (hn)
would be a bloc Toeplitz convolution matrix. In that case
(i.e., stationary), even with a non-ideal channel, in absence
of noise and under the channel identifiability condition (i.e.,
h(z) 6= 0;8z) andN � Q, T (h) is full column rank [5].
So that perfect equalization is achievable, i.e., there exists
an equalizerg such asT (h)>g is equal to a canonic vec-
tor. Besides, we know that an ill-condition ofT (h)>T (h)
results in bad equalization performances, [3].

3.3. Offset tracking

Because of the good conditionning ofT (hn) (in our simu-
lations from (4)) at each instant, we can consider that there
is an equalizergn realizing the correct inversion ofT (hn),

T (hn)
>gn = �� = [0::010::0]>: (8)

From a previous work, [1], we know that the matrix good
condition is crucial for a good equalization when the chan-
nel is time-varying. It allows tracking with a faster conver-
gence than when the matrix is ill-conditionned. The equal-
izer should therefore be able to correct the presence of the
sampling frequency offset.
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Figure 3: Mean square error versus N

The only remaining question is whether an adptive algo-
rithm is quick enough to update the correct inversion at each
instant? This implies a very large step-size to accelerate the
convergence. Such a step-size induces a large residual jit-
ter error. To illustrate the FSE performances, we simulate
an FSE updated by an LMS algorithm. The received signal
is sampled with a sampling frequency offset,�

T
= 10�2,

which is larger than realistic values. The emitted data is an
i.i.d and binary sequence. The channel is ideal, with an in-
put signal to noise ratio,SNR = 20dB. The LMS is run

with a step-size equal to0:1. We have processed 20 reali-
sations of a sequence of 500T, with different values of the
equalizer lengthN .

As we can see on Figure 3, the performances of the LMS
are correct as long as N is inside a very limited set of val-
ues. Below the limit ofN = 5, the squared error is very
important because the equalizer is unable to remove the ISI
induced by the frequency offset. AboveN = 9, the squared
error becomes large because of the residual stochastic jitter
due to the high value of the step-size and of the noise, see
[4].

However the important result of this simulation is that
we can bear a very high level of sampling frequency offset
with an FSE with relevant length.

4. REAL CASE

In this section, we want to confront our study on FSEs with
real data suffering from a sampling frequency offset. At
first, we should note that realistic channels are not ideal.
They induce ISI that causes extra degradation of the perfor-
mances. But which is the limit value of the residual timing
offset for which the equalizer performs correctly ? We try to
evaluate empirically this limit by processing realistic chan-
nels.

4.1. Realistic signal

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

2

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

3

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

4

T/2 spaced chan coef

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

bl
oc

k 
1

runway.2ray.hh.otm 

Figure 4: Evolution of the realistic channel run-
way.2ray.hh.otm

The realistic channels we study have been first analyzed
by the Cornell University - Blind Equalization Research Group
(CU-BERG) in collaboration with Applied Signal Techn-
logy, [2]. They are time-varying microwave channels esti-
mated from data collected by an antenna put on a mobile ve-



hicle in different environments. During the processinge of
this data a problem of sampling frequency offset appeared
on some snapshots. The frequency offset was evaluated to
be comprised between�

T
= 10�5 and �

T
= 10�6. Figure

4 represents the evolution of a realistic mild time-varying
channel versus time. We notice the similarity between the
evolution of the numerically calculated pulse shapes in Fig-
ure 1 and of the realistic channel Figure 4. The amplitude of
the realistic channel main taps may raise with time because
of the frequency offset.

4.2. Fractionally-spaced equalization

We assume that the time-variation of the channelc(t) by
itself is very slow compared to the variations due to the fre-
quency offset. This assumption seems to be reasonable with
regard to Figure 4. The simulations are similar to that in the
previous section but realized on the data from the filerun-
way.2ray.hh.otm described in [2]. We want to know
which values of equalizer length and step-size are adequate
in order for the FSE to handle the channel dispersion com-
bined with the receiver sampling frequency offset.

On Figure 5, we plot the equalizer input downsampled
to one symbol perT , itis downsampled by a factor8 from
the real input. Obviously, the channel rolling induces ISI to
be compensated by an equalizer.
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Figure 5: Downsampled equalizer input

On Figure 6, the equalizer output is displayed. Simu-
lation has been run with a step-size� equal to0:01, and
equalizer lengthN = 8. The ISI has been greatly reduced
and the remaining ISI can be taken care of by any decision
device.

Other simulations withN = 8 show that if we increase
the step-size above� = 0:02, the resulting equalizer output
shows a larger mean square error. It means that the algo-
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Figure 6: Equalizer output with� = 0:01

rithm jitter (i.e., stochastic jitter due to noise and non-zero
updating term at each iteration) becomes important. On
the other hand, a step-size smaller than� = 0:003 does
not allow to follow the system time-variations. The range
of step-size that provides with reasonable performances is
much smaller than for simulated data.

5. CONCLUSION

We have shown that FSEs allow to bear a quite high fre-
quency offset between the transmitter baud rate and receiver
sampling frequency. Even when there is some channel dis-
persion, good performances are acheived by the FSE on the
training sequence.

The remaining question is now how to maintain these
performances on the data for which the equalizer is not trained.
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