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ABSTRACT

Recently in the machine learning research �eld several ex-
tensions of hidden Markov models (HMMs) have been pro-
posed. In this paper we study their posibilities and poten-
tial bene�ts for the �eld of acoustic modeling.

We describe preliminary experiments using an alterna-
tive modeling approach known as factorial hidden Markov
models (FHMMs). We present these models as extensions
of HMMs and detail a modi�cation to the original formula-
tion which seems to allow a more natural �t to speech. We
present experimental results on the phonetically balanced
TIMIT database comparing the performance of FHMMs
with HMMs. We also study alternative feature representa-
tions that might be more suited to FHMMs.

1. INTRODUCTION

Over the last decade hidden Markov models have become
the dominant technology in speech recognition. HMMs
provide a very useful paradigm to model the dynamics of
speech signals. They provide a solid mathematical formu-
lation for the problem of learning HMM parameters from
speech observations. Furthermore, e�cient and fast algo-
rithms exist for the problem of computing the most likely
model given a sequence of observations.

Due to their success, there has recently been some in-
terest in exploring possible extensions to HMMs. These
include factorial HMMs [4] and coupled HMMs [2]. In this
paper we explore factorial HMMs. These were �rst intro-
duced by Ghahramani [4]. They attempt to extend HMMs
by allowing the modeling of several stochastic random pro-
cesses loosely coupled. Factorial HMMs can be seen as both
an extension to HMMs or as a modeling technique in the
Bayesian belief networks [9] domain. In our work we choose
to approach them as extensions to HMMs. Further detail
can be found in [8].

The paper is organized as follows. We start by describ-
ing the basic theory of HMMs and then follow by present-
ing FHMMs as extensions of these. A modi�cation to the
original formulation is then proposed which allows better
modeling of speech. We describe then several experiments
designed to compare the performance of FHMMs with tra-
ditional HMMs. We end this paper with our conclusions
and suggestions for future work.

2. FACTORIAL HIDDEN MARKOV MODELS

Factorial hidden Markov models were �rst described by
Ghahramani [4]. In his work Ghahramani presents FH-
MMs and introduces several methods to e�ciently learn
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Figure 1: Topological representation of a Hidden Markov
Model

their parameters. Our focus, however, is on studying the
applicability of FHMMs to speech modeling. Our goal is to
study FHMMs as a viable replacement for HMMs.

2.1. Model Description

Hidden Markov models are probabilistic models describing
a sequence of observation acoustic vectors Y = fYt : t =
1; : : : ; Tg. They are characterized by a hidden state se-
quence and an output probability which depends on the
current state. The probability density function (pdf) of Y
given the model � is

p(Y j�) =
X
S

�(S1)p(Y1jS1)

TY
t=2

P (StjSt�1)p(YtjSt): (1)

Here S is a sequence of states fSt; t = 1; : : : ; Tg, P (StjSt�1)
is the transition probability from state St�1 to state St,
�(S1) is the (prior) probability of being in state S1 at time
t = 1, and p(YtjSt) is the pdf of the observation vector
Yt given the state St. p(YtjSt) is typically modeled as a
Gaussian mixture. We assume that the model has K states.

In the speech community a HMM is typically repre-
sented topologically as shown in Figure 1. Here each state is
shown explicitly and the arrows show allowable transitions
between states. However a HMM can also be represented
as a dynamic belief network [9]. as shown in Figure 2. This
alternative representation shows the evolution of the state
sequence in time. Each node represents the state at each
time slice. This context switch to dynamic belief networks
allows many new modeling possibilities such as FHMMs.

The factorial HMM arises by forming a dynamic be-
lief network composed of several `layers'. This is shown in
Figure 3 . We see here that each layer has independent dy-
namics but that the observation vector depends upon the
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Figure 2: Dynamic Belief Network representation of a Hid-
den Markov Model
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Figure 3: Dynamic Belief Network representation of a Fac-
torial Hidden Markov Model

current state in each of the layers. This is achieved by al-
lowing the state variable in Equation 1 to be composed of
a collection of states. That is, we now have a `meta-state'
variable St which is composed of M states as follows

St = S
(1)
t
; : : : ; S

(M)
t

: (2)

Here the superscript is the layer index with M being the
number of layers. The layer nature of the model arises by
only allowing transitions between states in the same layer.
Were we to allow unrestricted transitions between states we
would have a regular HMM with a KMxKM transition ma-
trix. Intermediate architectures in which some limited tran-
sitions between states in di�erent layers are allowed have
also been presented in [2].

By dividing the states into layers we form a system that
models several processes with loosely coupled dynamics.
Each layer has similar dynamics to a basic hidden Markov
model but the probability of an observation at each time
depends upon the current state in all of the layers. For
simplicity the number of possible states in each layer is K.
Thus we have a system that requires M KxK transition
matrices.

2.1.1. Topological Equivalence to a Basic HMM

Notice that a factorial HMM system could still be repre-
sented as a traditional HMM with a KMxKM transition
matrix. For example, consider a two-layer system with
three states per layer. Let the transition matrices for layer

1 and layer 2 be A1 and A2 respectively.

A1 =

 
a1 b1 c1
0 d1 e1
0 0 1

!
A2 =

 
a2 b2 c2
0 d2 e2
0 0 1

!

The transition matrix for the equivalent basic HMM system
is built by creating a Cartesian product of the two original
matrices A1 and A2

0
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a1a2 a1b2 a1c2 b1a2 b1b2 b1c2 c1a2 c1b2 c1c2
0 a1d2 a1e2 0 b1d2 b2e2 0 c1d2 c1e2
0 0 a1 0 0 b1 0 0 c1
0 0 0 d1a2 d1b2 d1c2 e1a2 e1b2 e1c2
0 0 0 0 d1d2 d1e2 0 e1d2 e1e2
0 0 0 0 0 d1 0 0 e1
0 0 0 0 0 0 a2 b2 c2
0 0 0 0 0 0 0 d2 e2
0 0 0 0 0 0 0 0 1

1
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resulting in a transition matrix with KM = 9 states. As

we can see an explosion in the number of states occurs.
For this reason, as noted in [4], it is preferable to use the
M KxK transition matrices over the equivalent KMxKM

representation simply on computational grounds.

2.1.2. Posterior Probability Formulation

We now consider the probability of the observation given
the meta-state. As mentioned, this probability depends on
the current state in all the layers. In [4] this probability was
modeled by a Gaussian pdf with a common covariance and
the mean being a linear combination of the state means.
This pdf is given by Equation 3. We refer to this model as
a `linear' factorial HMM.

p(YtjSt) / (3)

exp

(
�
1
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�
(mjSt)
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Here �(mjSt) is the mean of layer m given the meta-state St
and C is the covariance. Other symbols are as previously
de�ned.

A problem with this combination technique is that is it
not extendible to the multiple Gaussian mixture. Neither
is it a very natural �t to speech.

We propose a combination method that assumes that
p(YtjSt) is the product of the (Gaussian) distributions of
each layer. We refer to this technique as the `streamed'
method with each layer of the FHMM modeling a `stream'
of the observation vector. This method is extendible to mul-
tiple Gaussian mixtures. This pdf is de�ned by Equation 4
below.

p(YtjSt) / (4)

�
1

2

MY
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exp
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MmYt � �

(mjSt)
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C
�1
�
MmYt � �

(mjSt)
�o
:

Here the matrix Mm partitions the observation vector into
streams. For example in a two-layer system we have

M0 = ( IK 0K ) (5)

M1 = ( 0K IK ) : (6)

Here IK is the KxK identity matrix.



Model % Error
Baseline HMM 31.97
Linear FHMM 71.30

Table 1: Classi�cation Results - Linear FHMM vs HMM

This formulation of the FHMM seems a more natural
�t to speech feature vectors since these are often composed
of several streams of sub-vectors. For example, a typical
feature vector may consist of the cepstrum, delta cepstrum,
second delta cepstrum, and sometimes even energy and its
derivatives. If these di�erent streams have somewhat de-
coupled dynamics then a factorial HMM could be a logi-
cal alternative to HMMs. Each distinct sub-vector stream
could be modeled by each of the layers in the FHMM.

The idea of streams has already been proposed in the
speech research community. Recognition engines such as
SPHINX [7] and HTK [10] allow similar formulations in
their HMM systems. The di�erence between our formula-
tion and theirs is that the streamed FHMM allows more
decoupling of the streams' dynamics.

Notice that in Equation 4 we show a single covariance
although extending this formulation to use a di�erent co-
variance for each stream or each state in each stream is
straightforward.

3. ESTIMATION OF PARAMETERS

The parameters of the FHMM are estimated using the Est-
imation-Maximization algorithm . For further details refer
to [4] and [8].

4. EXPERIMENTAL RESULTS

Our experiments tested a factorial HMM system on a pho-
neme classi�cation task. We used the phonetically balanced
TIMIT database [3] . Training was performed on the `sx'
and `si' training sentences. These create a training set with
3696 utterances from 168 di�erent speakers. 1344 sentences
from the test set were used for testing. The factorial HMM
had two layers and three states in each layer. The standard
Kai-Fu Lee phonetic clustering [6] was used resulting in 48
phoneme models with these being further clustered during
scoring to 39 models.

A baseline system was also implemented. This was a
three-state left-to-right HMM system. Mixtures of Gaus-
sians were used to model the posterior probabilities of the
observation given the state. 32 mixture components were
used per state.

We used cepstral and delta-cepstral features derived
from 25.6ms long window frames. The dimension of the
feature vector was 24 (12 cepstral and 12 delta cepstral fea-
tures). Cepstral mean removal was applied to all training
and testing �les.

4.1. Linear Factorial HMMs

The �rst experiment investigated the performance of a lin-
ear factorial HMM. The results are shown in Table 1. For
this experiment, the means and covariance were initialized
using the mean and covariance of the pooled training data.

These results demonstrate that the linear factorial HMM
models speech poorly. A major problem here is that there
are not enough system parameters to form a good model.
Adding more layers or states would increase the computa-
tional complexity exponentially while only providing small

Model Feature Vector % Error
Baseline HMM Cepstrum + Delta 31.97
Baseline HMM Cepstrum 46.82
Baseline HMM Delta Cepstrum 50.42
Parallel HMM Cepstrum + Delta 36.86
Streamed FHMM Cepstrum + Delta 36.58

Table 2: Classi�cation Results - Streamed FHMM vs HMM

F
ea

tu
re

 E
xt

ra
ct

io
n

Speech

Feature
sub-groups

Classifier

Classifier

Classifier

M
er

g
in

g Result

Figure 4: Feature Sub-band Classi�cation Model

modeling advantages. We therefore turn our attention to
the streamed FHMM.

4.2. Streamed Factorial HMMs

The parameters for each stream are initialized using reg-
ular HMMs trained on the features of the corresponding
stream. Table 2 shows the results when one layer mod-
els the cepstrum and the other models the delta cepstrum.
For completeness, the error rates of the HMMs trained on
the cepstrum and delta cepstrum only are also shown. 32
mixture components per state were used in all the models.

We can see that while the streamed FHMM produces
reasonable results it is not able to improve upon the basic
HMM model.

A reason for this may be that there is only an advan-
tage in using the FHMM if the layers model processes with
di�erent dynamics. The cepstrum and delta cepstrum are
highly correlated hence it is to be expected that they would
have similar dynamics.

We therefore tried feature vectors that we expected to
be somewhat more decorrelated. It was hoped that per-
haps the modeling assumptions of FHMMs might be more
adequate and provide an edge over traditional HMMs.

4.3. Subband-based Speech Classi�cation

Recently, researchers have considered modeling partial fre-
quency bands by separate HMMs and combining the prob-
abilities from these at a suitable level (e.g. the phoneme
level) [1], [5]. The idea has its roots in models of human
auditory perception. Figure 4.3 shows the sub-band model.

Examining this �gure we can see there is clearly a great
deal of scope for research when choosing the number of fea-
ture sub-groups and the merging technique. We do not
consider these issues in our work. We have implemented a
simple two-band version of the sub-band model using ad-
dition of the acoustic log likelihood at the phoneme level
as the merging technique. We call this system a `parallel'
HMM.



Model Feature Vector % Error
Baseline HMM Upper + Lower band 33.44
Baseline HMM Upper band 52.14
Baseline HMM Lower band 47.39
Parallel HMM Upper + Lower band 35.30
Streamed FHMM Upper + Lower band 36.10

Table 3: Classi�cation Results - Streamed FHMM

The feature vectors for this system were derived as fol-
lows. A traditional mel-based log spectrum vector with 40
components was generated. The log spectrum was divided
in two streams, the �rst one containing the lower 20 com-
ponents and the second one containing the the upper 20
vector components. Each of the sub-vectors was rotated by
a DCT matrix of dimension 20x6 generating two cepstral
vectors each of dimension 6. Delta features for the resulting
two streams were produced and appended to them. Each
of these streams of vectors was then mean normalized.

Table 3 shows the results for experiments using the
banded feature vectors. We present results for tests using
the baseline HMMs, FHMMs, parallel HMMs and also for
HMMs trained on only the lower or upper band and their
delta coe�cients.

The factorial HMM was initialized as follows. Each of
the layers was trained �rst using traditional HMM tech-
niques. These HMMs were the initial models used by the
FHMM training algorithm.

Again we can see that there is no advantage in using
the FHMM model.

5. DISCUSSION

Further work is needed to conclude if factorial HMMs are
a good alternative to HMMs. Since the major advantage
o�ered by these models appears to be their ability to model
a process which is composed of independently evolving sub-
processes, the choice of features is critical. If the features
are indeed highly correlated factorial HMMs do not seem
to o�er compelling advantages. This fact is noted by Brand
[2] who states that `conventional HMMs excel for processes
that evolve in lockstep; FHMMs are meant for processes
that evolve independently'.

We postulate however that there could be some advan-
tage in using the FHMM framework to model speech and
noise if these were uncorrelated. Alternatively if sub-band
features were used the FHMM could provide more robust
recognition in the case of corruption in one sub-band as
described in [5]. Further work is needed in this area.

The most interesting research direction however would
be to investigate the combination of traditional speech fea-
tures with other information such as articulator positions or
language models or lip tracking information. The FHMM
framework provides an interesting alternative to combining
several features without the need to collapse them into a
single augmented feature vector.

It is important to notice that alternative formulations
combining the information from each of the states in the
meta-state are possible. In this paper we have described
the linear FHMM and the streamed FHMM. Perhaps other
alternatives could be explored.

Our conclusion, therefore, is that further research is
needed to decide if algorithmic extensions to HMMs such as
factorial HMMs or coupled HMMs o�er a good alternative
to traditional HMM techniques. The work in this paper
only represents a very �rst e�ort in this direction.

6. CONCLUSIONS

We have presented factorial HMMs as possible extensions of
hidden Markov models. These models were investigated in
the context of phoneme classi�cation as a possible replace-
ment for traditional HMMs. We have also introduced and
explored the concept of streamed factorial HMMs. Our ex-
perimental results proved inconclusive. In the experiments
presented in this paper, factorial HMMs did not appear to
o�er any advantage over regular HMMs when traditional
feature vectors were used. We postulate that this is be-
cause any modeling advantage o�ered by factorial HMMs
will only become evident if less correlated features are used.
We conclude the paper with suggestions for future work.
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