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ABSTRACT

A data transmission framework is proposed to embed digi-
tal data into an audio signal in a perceptually undetectable
or almost undetectable way. The resulting signal can be
reproduced as is with no loss of acoustic quality; the em-
bedded data can be exactly retrieved at the decoder. The
transmission process exploits the perceptual redundancy of
the audio signal to conceal the acoustic impact of the em-
bedded data; encoding of side information is used to inform
the receiver of the time-varying structure of the masking
properties of the audio signal. A sample implementation
is described with a throughput of the order of 30 kbit/sec
over CD-quality audio.

1. INTRODUCTION

State of the art audio coding algorithms such as MPEG [1]
or AC3 can provide acoustically transparent compression
ratios of the order of 4:1 to 6:1. As an example, a PCM CD-
audio stereo bitstream (whose raw bitrate is 1.41 Mbit/sec)
can be encoded by the MPEG algorithm at 384 kbit/sec
without any perceivable loss of quality. These results are
the outcome of a clever exploitation of themasking phenom-
ena inherent to human hearing [3]. Simply stated, maskings
occurs when weaker signal components are made inaudible
by the presence of louder components; such weaker compo-
nents are said to lie below the masking curve of the signal.
Compression algorithms quantize the signal so that the bulk
of the overall quantization noise is hidden below the mask-
ing curve.

From a di�erent perspective, the fact that the percep-
tual quality of an audio signal is not a�ected as long as
the injected noise is shaped to fall below the masking curve
could be exploited to embed digital modulated data onto
the audio waveform in an acoustically imperceptible way.
The main advantage of this technique lies in the layered
structure of the processed waveform: it occupies the same
storage medium as the unprocessed one, either permanent
or volatile; users with access to more sophisticated decoding
equipment can retrieve the embedded data, but the audio
data per se can be played by standard equipment as before.

Perceptual hiding of embedded data has been proposed
previously in the context of audio watermarking [2]; our
approach, although directly applicable to the problem of
digital watermarking, is however more general in that the
goal is to arrive at a data concealment system which allows
perfect extraction at the receiving end.

2. PSYCHOACOUSTIC MODELING

Acoustic masking is a consequence of the nonlinear pro-
cessing mechanisms of the human ear; frequency selective
areas in the cochlea, called critical bands, exhibit a sat-
uration characteristic whereby loud frequency components
render inaudible the weaker components in the same critical
band which lie below a certain threshold. The value of the
threshold follows the decaying pattern of an experimentally
determined masking function in the vicinity of the masker,
and its absolute value depends on the index of the critical
band, on the power of the masker (the loud component),
and on the type of the masker (whether an isolated spec-
tral line or part of a noise-like spectral component). The
masking function can be approximated as a linear function
in the log-power, bark frequency domain, where a unit of
one bark corresponds to the width of a critical band; since
the width of successive critical bands increases by approxi-
mately a third of an octave, there is a logarithmic mapping
between bark scale and linear frequency scale. Each spec-
tral component originates a local masking function; the sum
of all masking thresholds for all components across the sig-
nal's bandwidth yields the overall masking curve.

The algorithmic process of estimating the masking curve
is called psychoacoustic modeling. The outline of the esti-
mation procedure can be illustrated with reference to the
MPEG standard psychoacoustic model 1, which will also be
used in section 5. It comprises the following steps [4]:

� Computation of the power spectrum; this is performed
by a short time Fourier transform analysis.

� Separation of tonal and non-tonal components; since
the masking power of isolated spectral lines is less
that that of noise-like spectral components, the for-
mer are separated from the latter.

� Computation of the individual masking thresholds; this
step is accomplished by convolving each spectral com-
ponent by the appropriate (tonal or non-tonal) mask-
ing function.

� Computation of the global masking curve; the mask-
ing curve is obtained as the sum of the individual
masking thresholds.

An additional step is required to map the masking curve
thus obtained to the linear frequency domain; the �nal re-
sult will be denoted by T (t; !). If the spectrum is divided
in subbands (as is the case for MPEG compression, or for
the signaling schemes we will examine later), the masking
curve is generally discretized to one single value per sub-
band; this is accomplished by selecting for each subband n
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Figure 1: Masking curve for one frame.

the minimum of the masking curve in the interval straddled
by the subband. The resulting set of masking levels will be
denoted by Ts(t; n).

The time-frequency resolution of the psychoacoustic model
depends on the underlying short time spectral analysis used
to compute the power spectrum, and it is a tradeo� between
accuracy of the tonal and non-tonal representation and re-
sponsiveness to fast signal transients. In MPEG layer II,
for an input sampling rate of 44.1 KHz, the psychoacous-
tic model produces a masking curve every 26 ms.; in the
following, we will refer to this analysis interval as a frame
and denote its duration by tf . Figure 1 displays a typical
masking curve for a single frame of audio data. Here and in
the following, the examples are obtained from track 2 of [5].

3. MULTICHANNEL SIGNALING

The time-varying masking curve indicates for each frame
the portion of the signal which is in fact inaudible. From the
perspective of embedding data into the audio waveform, the
goal is to shape the power spectrum of the modulated data
signal so that it falls below the masking threshold. In other
words, over the bandwidth used for signaling (which can
be the entire signal's bandwidth), the masking threshold
represents the ideal power constraint of the channel. Since
the instantaneous channel conditions are exactly known at
the transmitter, the design of an embedded signal which
ful�lls the masking threshold requirements translates to a
classic water�lling problem.

Multichannel modulation ideas can be usefully employed
to simplify the task at hand. By splitting the available
bandwidth into adjacent non-overlapping subbands, the wa-
ter�lling problem is discretized into a �nite number of in-
dependent signal design problems. Each subband n can be
considered a time-varying fading channel where the instan-
taneous masking level Ts(t; n) represents the power con-
straint for the embedded data signal and therefore the sig-
nal's power at the receiver. The peculiar feature of this
transmission scheme (as opposed to [6], for instance) is that
the channel conditions are exactly known at the encoder;
the signaling scheme can therefore be adjusted on line to
minimize audio distortion while maximizing throughput.

At the receiver, however, the situation is di�erent; chan-
nel conditions are not known with precision, since the com-
posite signal (original plus embedded data) possesses a dif-

ferent masking structure with respect to the original wave-
form. Informally stated, the psychoacoustic model at the
transmitter singles out the perceptual \gaps" in the audio
signal; the embedded data is shaped as to �ll these gaps,
so that psychoacoustic analysis of the original and compos-
ite waveforms can di�er substantially. Relying on psychoa-
coustic modeling at the receiver to infer channel conditions
would therefore result in signal-dependent errors which are
very di�cult to analyze and counteract. For this reason we
choose to use side information, piggybacked onto the data
signal, to inform the receiver of incoming switches in the
transmission model1.

Since side information reduces the net throughput of the
signaling scheme, it is desirable to minimize the number of
transmission model switches; on the other hand, in order to
minimize distortion, there should be enough model switches
to allow the embedded signal to closely follow the time-
varying masking threshold; depending on the application,
one might be willing to increase the throughput by keeping
a signaling model constant over short periods in which its
output power is above the masking threshold. This funda-
mental tradeo� can be looked at as a general rate-distortion
problem, whereby we seek to maximize the throughput B
while ful�lling a distortion constraint Dmax:�

maxfBg
D � Dmax

(1)

E�cient dynamic programming techniques exist to select
the optimal number of model switches and their location [7,
8], and we will examine this in the next section.

4. OPTIMAL SIGNALING STRATEGY

The above constrained minimization problem can be refor-
mulated in unconstrained form by considering the inverse
cost functional

J(�) = S + �B (2)

where S is the signal to noise ratio of the composite signal
and B is the throughput. If D is the distortion introduced
by the embedded data signal, S = Smax�D, where Smax is
the maximum dynamic range of the audio signal dependent
on its physical storage format (for instance, Smax = 96 dB
for CD audio). Solution of (1) is obtained by �nding

Ĵ(��) = maxfJ(��)g (3)

where �� is the value which guarantees S = Smax �Dmax

and which is found by a fast iteration of (3) over �.
In the discussion which follows, a single subchannel is

considered; the same principles equally apply to all the in-
dependent subchannels. For subchannel N , it is assumed
that the transmitter can choose between M transmission

1Other reasons to use side information to notify the receiver
of channel conditions are decoder simplicity and the possibil-
ity, much in the MPEG fashion, to use arbitrarily complex psy-
choacoustic schemes at the encoder as long as the resulting data
stream complies with the mandated bitstream syntax. Evolution
of the encoding process would not therefore require modi�cations
at the decoder.
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Figure 2: Incremental construction of the set of possible
segmentations.

schemes, each with a given average power pk and bitrate
bk, 1 � k � M ; using model k for a transmission interval
from frame n to frame n+m� 1 results in throughput and
SNR values of

Bk(n;m) = maxf�ck +

n+m�1X
i=n

bk; 0g (4)

Sk(n;m) = Smax �

n+m�1X
i=n

�(i; pk) (5)

where ck is the side information (in bits) used to indicate
the model index and the duration of the frame interval. The
distortion function is

�(i; p) =

�
0 if p � Ts(i; N)
p� Ts(i; N) if p > Ts(i; N)

(6)

Since throughput and distortion are non negative, ad-
ditive, and independent over disjoint signaling intervals we
can make use of dynamic programming to �nd the opti-
mal number of model switches and the optimal sequence of
models for a given distortion budget. Under these condi-
tions we can indeed rewrite (3) the following way: let for
convenience be

Jmax(�; n;m) = max
k=1;:::;M

fSk(n;m) + �Bk(n;m)g;

then

maxfJ(�)g = max
�2W

f
X

(n;m)2�

Jmax(�; n;m)g (7)

where � is a set of pairs (n;m) which de�ne a segmentation
of the data, and W is the set of all possible such segmen-
tations. By the optimality principle the maximization over
W can be carried out incrementally: let W0 = ;; at each
step j, form Wj by extending all the segmentations in Wi

by segment (i + 1; j), for all i from 0 to j � 1 (see Fig-
ure 2, where the extending segments are drawn in gray).
In a parallel way, the maximum cost functional for Wj is
found amongst the sums of the cost of coding the extension
(i + 1; j) plus previously computed max cost for subparti-
tion Wi, for 0 � i < j. Therefore we start by computing
Ĵ0(�) = 0 and then, at each step j,

Ĵj(�) = max
0�i<j

fĴi(�) + Jmax(�; i + 1; j)g (8)

At each step we need only keep track of the newly computed
value Ĵj(�) and of the value of i yielding the maximum.
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Figure 3: Masking threshold over time for a single subchan-
nel.

This de�nes an incremental algorithm which, for a given
operating point �, yields the optimal segmentation and the
optimal sequence of models with only quadratic computa-
tional complexity and linear storage requirements; as with
all dynamic programming techniques, the complexity can
be made linear by operating the maximization process of
(8) over a sliding window, at the price of a slight subopti-
mality.

5. IMPLEMENTATION

To exemplify the signaling strategy described above we em-
ployed the basic building blocks of the MPEG-audio com-
pression algorithm [1]. A 32-channel �lterbank is used to
decompose a CD audio signal (44.1 KHz sampling rate,
stereo, 16 bits/sample) into subchannels 389 Hz wide; of
these, the �rst 6 are used as independent subchannels for
the embedded data. A psychoacoustic model provides the
masking levels for each subchannel with a time resolution
of 26 ms., corresponding to a transmission frame duration
of 36 samples per subchannel.

In this simple example, the data is tagged onto the audio
signal by modifying the least signi�cant bits (LSB's) of the
subband samples; the composite waveform is synthesized
via the dual of the analysis �lterbank and quantized to 16
bits. Due to this quantization, bit tagging starts from the
second bit of each subband sample, since the LSB is a�ected
by roundo� error. At the receiver, the analysis �lterbank
decomposes the signal and the tagged bits can be retrieved
from the subband samples. By using �xed point arithmetic

2.5 3 3.5 4 4.5 5 5.5 6 6.5
−25

−20

−15

−10

−5

0

5

10

throughput (Kbit/sec)

dis
tor

tio
n (

dB
)

Figure 4: Throughput/Distortion curve for channel 5.
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Figure 5: Two possible signaling model sequences.

with at least 27 bits of precision one can guarantee perfect
recoverability of the tagged bits in the absence of channel
errors.

With respect to the previous discussion, in this scheme
we selected M = 8, corresponding to tagging zero to seven
bits to each subband sample. The corresponding power
levels pk are given in table 1; these are the same values
as introduced by a k-bit noise source, where the additional
bit comes from the unusability of the subband LSBs. The
side information comprises the model index k, which can
be coded by three bits, and the signaling interval duration,
9 bits, for a maximum interval length of 512 frames or 13.3
seconds; since side information is vital to the decoding pro-
cess, a rate 1/3 error control code is used, bringing the cost
of side information to 36 bits per model switch.

Initialization of a subchannel takes place after detecting
a frame-long syncword; the next frame is by convention
a 1-frame segment containing solely the side information
for the segment to follow encoded with model number two.
Each segment starts with the side information for the next
segment.

The test audio signal used in the experiments of Fig-
ures consists of 8 seconds of music for string quartet [5]. In
the remainder of this section we will illustrate the results
relative to one subband, the �fth of the right channel; qual-
itatively identical results hold for all the other subbands.
Figure 3 displays Ts(i; 5), the time-varying masking level
for this sample subband. Iteration of the dynamic segmen-
tation algorithm for several values of � yields the through-
put/distortion curve of Figure 4. The y-axis corresponds
to the average distortion introduced by the embedded data
signal; negative values for the distortion indicate that the
noise introduced by the bit tagging is on average below
the masking threshold. Figure 5 displays two di�erent se-
quences of model switches; the thin line is the masking level
of Fig. 3 while the thick line indicates the power of the cho-
sen signaling model at each instant. The �rst segmentation
corresponds to no perceptible distortion, the second one to
an average distortion of 0.9 dB. It can be noted in this
second case that the decreased distortion constraint deter-
mines a looser match between signaling power and masking
threshold; the increase in throughput comes directly from
the reduced number of signaling transitions.

For the global signaling scheme, at zero or less average
distortion for each subband, the total throughput for the 6
left and right subchannels is 24.6 kbit/sec.

6. CONCLUSIONS

A data transmission system has been presented which al-
lows to tag data to an audio signal in a perceptually trans-
parent way. Audio �les which demonstrate the algorithm
as well as an implementation of the coding process can be
retrieved at:
http://lcavwww.epfl.ch/~prandoni/optimal.html
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k pk (dB) k pk(dB)

1 �1 5 31.59
2 7.0 6 37.75
3 16.0 7 43.84
4 25.28 8 49.89

Table 1: Power associated with the signaling models.


