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ABSTRACT

A new memory-based architecture for real-time image convolution
with variable kernels is proposed. The architecture exploits the
highest possible bandwidth inherent in memory and achieves the
fine-grain parallelism of computations inside the memory. Unlike
existing approaches, the architecture ensures convolution with very
large kernels under the real time constraints of video applications.
It does not require external memory banks or large I/O count and
features single chip VLSI implementation.

1. INTRODUCTION

1.1. Motivation of this work
Discrete image convolution (or non-recursive FIR filtering) is one
of the most critical steps in digital image processing. Having a 2-D
image X of (M � N ) pixels and a 2-D kernel, W of (H � K)
coefficients with finite support, the task of convolution of X by
W can be represented by the following expression:

y(i; j) =

H�1X
h=0

K�1X
k=0

w(h; k)� x(i� h; j � k)

where 0 � i � M � 1, 0 � j � N � 1, x(i; j) 2 X and
w(h; k) 2W .

Algorithms involved in image recognition, correlation, enhance-
ment, usually demand convolution by dynamic range kernels, with
sizes varying from 2�2 and 3�3 (for the first order methods) up
to 16�16 or 32�32 (for the second order methods). The larger
the values of H and K , the closer the convolution filter will
match the desired frequency response, the better enhancement and
restoration will be provided[1]. Furthermore, in most applications
the convolution is applied at the front end of image processing
and hence has to be carried out at real-time requirements. For
example, if an image has 720�576 pixels coded on 8 bits (stan-
dard TV Format), a kernel has 32�32 coefficients coded on 6
bits, and the input pixel rate of 27MHz, over 14 Giga operations
have to be executed per second, with one operation being a 6�8
multiplication-accumulation (MAC). The only way to handle such
an enormous computational rate is to implement the convolution
algorithm in hardware.

1.2. Related Research
A number of hardware architectures have been proposed for image
convolution over the last decade[2]-[7]. Despite differences,
all of them have one feature in common: they all assume that
image data is stored in a memory external to the processing
array. Therefore efforts have been concentrated on the data
flow optimization within processor array to perform computations
as fast as possible under severely limited I/O bandwidth. The
goal is usually approached by restricting the kernel size up to
10 by 10 format and reducing the coefficient variations to central
symmetry[2] or power of two[8]; partitioning of large convolutions

into cascaded 1-D filter sections[9],[10] to be executed in parallel.
Although these methods speed-up the execution, they are bounded
by the bandwidth limitations imposed by the memory-processor
separation. As result none of the proposed architectures can deal
with kernel format larger than 12�12.

This work differs from the previous research in that it ex-
ecutes convolution inside the memory. By placing the ac-
tual processing logic on the memory chip, and logically and
physically matching it to memory array, we utilize the exces-
sive internal memory bandwidth available within the memory
structure itself. Several researchers have already reported the
memory-logic integration benefits for general purpose applica-
tion [11],[12]; vector quantization[13], motion estimation[14],
DCT[15], multimedia[16], [17], etc. However, the problem of
memory-based convolution has not been investigated yet.

1.3. Contribution
In this paper, we propose a new memory based architecture for
the real-time convolution with variable kernel format. In our
design, explicit provisions have been made to exploit the highest
possible bandwidth inherent in memory and achieve the fine-
grain parallelism of computations at the pixel level. Compared to
existing architectures, our architecture ensures convolution with
very large kernels (up to 32�32 coefficients) while satisfying
the timing constraints of the real-time video applications. The
architecture features small I/O count, regular layout and is suitable
for single-chip VLSI implementation.

The next section presents the architecture. Section 3 analyzes
the performance and implementation cost. Conclusions are drawn
in section 4.

2. THE ARCHITECTURE

2.1. Overview
The proposed architecture consists of Functional Memory Array
(FMA) and controller, as shown in Figure 1(a). The inputs
R=W and Conv determine working mode (Read, Write or
Convolution), in which the architecture either reads/writes image
data to location A in the FMA or convolves the data stored in the
array to kernel (W ) of size H �K. (We assume that the kernel
parameters are established by the user through inputs H and K).
The image pixels are supplied via bus I The bus O outputs the
convolution results.

2.2. Functional Memory Array
The FMA is composed of three shift registers (Rw, R1; R2),
decoders and an array of (N � M ) Functional Memory cells,
FM(i; j), 0 � i � (N � 1), 0 � j � (M � 1), as shown in
Figure 1(b). The register Rw receives the active coefficient wh;k

and shifts it to the left every clock cycle, sending the coefficient’s
Least Significant Bit (LSB) into the array (line w). The registers
R1,R2 control the convolution process in horizontal and vertical
direction, respectively. (The size of register R1 is of N bits; R2
is of M bits). Every array cell, FM (i; j), is connected to its four
neighbors, input bus (I(j)), output bus (O(j)), the coefficient line
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Figure 1. Proposed architecture: (a) An outline; (b) organization of the FMA; (c) structure of the cell FM(i; j)

(w), two select lines (si; vj) and control lines. (For the simplicity,
the control lines are not shown in the figure). During the read/write
operation the select lines implement the addressing function, while
in the convolution mode, they activate/disactivate logic elements
within the cells.

Figure 1(c) shows internal organization of a cell FM(i; j). As
patterns depict, the cell consists of three parts: two memories built
upon shift registers Q and Z, respectively, and a logic circuit
placed between the memories and composed of 1-bit adder, 4x1
multiplexor (mux) and three gates. The registerQ stores the image
pixel, x(i; j); the registerZ stores the intermediate and final result,
y(i; j). In every clock cycle, t, the cell’s logic computes the bit-
product, p[t](i; j), of the pixel bit x[t](i; j), fed from register Q,
and the coefficient bit, w[t](h; k), fed from the input (w), and adds
it to the corresponding bit of the sum y[t](i; j) accumulated at the
previous cycle in the neighbor cells (FM(i; j�1), FM(i; j+1),
FM(i � 1; j)) or its own Z register. The carry signal of the
addition, is kept in the flip-flop, T , while the sum is written to the
LSB of the register Z if and only if both select lines in the cell are
high, i.e. s(i) = 1 and v(j) = 1. Shifting of the registers Q and Z
by 1-bit to the left at the end of each cycle brings a new (t+ 1) bit
of x(i� h; j � k) and frees the LSB of Z for a new bit of y(i; j).
Since this serial accumulation necessitates processing of all bz bits
of the register Z,for each coefficient bit, w[t](h; k), the product
of x(i; j) by w[t](h; k) will be computed after one iteration of bz
clock cycles. If the coefficient has bz bits in size, the product,
x(i; j)�w(h; k) will be accumulated in the register Z after bw of
such iterations (i.e. one computational phase).

2.3. Controller
Depending on the input signals, the controller can be either in the
memory access state activating the I/O-busses and blocking the
clock, or in the computation state when it supplies signals, C to
select multiplexor’s inputs in the FM cells and shifts the registers
R1; R2; Q and Z . Given the convolution parameters H;K, the
controller selects the input FM(i � 1; j) at the initial phase
(n = 0), and then in every n � (H � 1) phase (n=1,2,..), during
which R2 is shifting one bit down. In between, the controller
selects the inputs FM (i; j + 1) or FM (i; j + 1) and shifts R1
to the right or to the left. In order to sustain for any kernel the
correct placement of the convolution results in the memory array,
the controller implements the right-first zig-zag shifting (Fig.2,a)
when H is odd, and the left-first zig-zag shifting (Fig.2,b) when
H is even. This means that the shift right of R1 and selection

of the input FM (i; j + 1) are performed every odd sequence of
(K�1) phases, whenH is odd and every even sequence of (K�1)
phases, when H is even. Correspondingly, the left shift in R1
and the FM(i; j + 1) input selection are performed in every even
sequence of (K�1) phases, ifH is odd, and in every odd sequence
of (K � 1) phases, if H is even. Thus, during computation the
partial results are iteratively moved between the FMs cells: (K-1)
times in a horizontal scan and then one step down in vertical scan.
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Figure 2. Data-transfer direction of odd H (a) and even H (b)

2.4. The system operation
We assume that before processing, all pixels of an image are
written into the FMA in a way that x(i; j) is stored in register Q of
memory cell, FMi;j , Also, we assume that the kernel parameters
(H;K) are set on registers R1; R2 through the following masking
of the register bits:

R1(i) =
n

1 if 0 � i � (M �K)
0 otherwise

R2(i) =
n

1 if 0 � i � (N �H)
0 otherwise

Figure 3(a) illustrates the pixel distribution in the FM array and
initial state of the registers R1; R2 for a simple example of 4 � 4
image and 2 � 2 kernel (Fig.3,b). Let us assume for simplicity
that all Z registers in the array initially null. (This however is not
necessary in the reality).

The convolution begins with sending the coefficient, w(1; 0), to
the register Rw and broadcasting its LSB value to all the FM cells.
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Figure 3. Illustration of the convolution process on example of 4� 4 image and 2� 2 kernel

During the first bz � bw consecutive cycles, each FM cell in the
array multiplies its own pixel by the coefficient value and adds the
product to the partial sum, taken from its top-adjacent cell. Since
cells with zero select lines can not save the results in registers, the
partial results are stored only in the (M �K) � (N �H) cells,
shown by grey patterns. Figure 3(c) depicts the results saved in the
cells after the first computation phase.

With each new coefficient, the register R1 is circularly shifted
one bit to the left (because the kernel size H is even), and the
computational process is repeated. Thus during the K phases, the
(M � K) � (N � H) partial sums calculated in the first phase
are iteratively moved along the rows (K � 1) times; each time
accumulating the result computed at the FM they visit. Figure 3(d)
illustrates the results accumulated in the FMA after the second
phase. When a new element of the kernel row enters the array, we
move the register R2 one bit down, as it shown in Figure 3(e), and
then start shifting R1 in the opposite direction implementing the
zig-zag scanning fashion. As Figure 3 shows, the accumulation
process is dynamic; unlike those of other architectures. The
sum computed in the FM(0,0) cell in the phase 1 travels the
(M � K) � (N � H) FMs in the zig-zag direction each time
accumulating a new partial product. Generally, after (K � H)
phases, all coefficients of the kernel are processed and all the
(N �M) convolution results (1) are available simultaneously in
the Z registers of the FM cells. Figure 3(f) exemplifies final
convolution results computed in the array.

3. EVALUATION

Since the proposed architecture convolves (M �K)� (N �H)
image pixels by one coefficient in parallel, taking bw � bz clock
cycles per coefficient, the latency for processing theK�H kernel
is L = bz � bw �H �K . Hence the architecture can estimate up
to fmax = 1=clock period� L images per second.

Figure 4 shows the number of images which can be convolved

per second as a function of the kernel row (column) size assuming
that H = K , the clock cycle of 5 ns, bw=6 and bz=24 bit. As can
be seen, the architecture can convolve 1356 images/sec by kernels
of 32 � 32 coefficients, 21 images/sec by kernels of 32 � 32
or 5.29 images by kernels equal to the Videophone Standard
picture size (N = 288� 352). The cross symbol characterizes the
maximal kernel size (Hmax=240) which can be processed under
the conventional video rate requirements (24 images per second).
Note that no existing architecture can provide feasible solutions
for the quadratic kernels larger than H=16. In comparison, our
architecture can convolve any image by such kernel in 184 � sec.

100

1000

1e+04

1e+05

0 100 200 300 400 500
Size of kernel’s row (column)

C
on

vo
lu

tio
n 

ra
te

 (
im

ag
e/

se
c)

10

Video
Phone

5

x24

240

Figure 4. Image rate vs. kernel’s row(column) size

Another advantage of our architecture is that it performs all the
convolution operations in place with the original image. That is,
the output and input images are stored in the same array, at the



same locations and there is no reformating or serialization of the
input image. This saves a lot of time because we do not have to
re-input the image or do any restructuring/ reformating of the data.

We evaluated the layout area requirements for convolving im-
ages of Video Telephone Format (288 � 352 pixels), TV Format
CCIR Rec.601 (720� 576 pixels) and HDTV Format (720� 1280
pixels) under assumptions that each pixel takes 8 bits represen-
tation, a coefficient takes 6 bits and the maximal kernel size is
32 � 32. Table 1 shows the area estimation results for CMOS
fabrication technology. As can be seen, the HDTV picture con-
volution by the 32 � 32 kernel can be implemented in 0.25�m
CMOS technology in a single 20 � 20 mm2 chip.

Table 1. Area requirements (mm2)
Image Number of Technology(�m)
Format FM cells 0.5 0.35 0.25

VideoPhone 101,376 169.4 86.4 42.3
Standard TV 414,720 692.9 353.5 173.2

HDTV 921,600 1539.7 785.5 384.9

4. CONCLUSIONS

We presented a new memory-based architecture for 2-D image
convolution. Due to distribution of arithmetic/logic operations
over the memory elements at the bit and word level, we were
able to obtain a fine-grain computational parallelism and exploit
the enormous bandwidth available within the memory array. The
preliminary results show that the architecture ensures feasible
solutions for the HDTV image convolution with not only param-
eterizable kernels but also with kernels of very large sizes (more
than 1000 coefficients). Future research will be dedicated to
detailed chip design.
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