
THE RWTH LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION SYSTEM

H. Ney, L. Welling, S. Ortmanns, K. Beulen, F. Wessel

Lehrstuhl für Informatik VI, RWTH Aachen – University of Technology, D-52056 Aachen, Germany

ABSTRACT

In this paper, we present an overview of the RWTH Aachen
large vocabulary continuous speech recognizer. The recog-
nizer is based on continuous density hidden Markov mod-
els and a time-synchronous left-to-right beam search strat-
egy. Experimental results on the ARPA Wall Street Journal
(WSJ) corpus verify the effects of several system compo-
nents, namely linear discriminant analysis, vocal tract nor-
malization, pronunciation lexicon and cross-word triphones,
on the recognition performance.

1. INTRODUCTION

This paper describes the large vocabulary continuous speech
recognizer developed at RWTH Aachen. The recognizer
employs a cepstrum front-end that includes linear discrim-
inant analysis (LDA) and vocal tract normalization (VTN).
For acoustic modelling, continuous density hidden Markov
models (CDHMM) and decision-tree based state tying are
used. A time-synchronous left-to-right beam search strategy
in combination with a tree-organized pronunciation lexicon
is used for decoding. Word graphs are generated using the
word pair approximation. Methods for fast evaluation of
emission probabilities provide a significant reduction of the
computational effort for distance calculations. Variants of
this baseline system are currently in use in several projects
in which our group is involved, e.g. Verbmobil [4] and Arise
(EU project LE3-4229).

In this paper, we will give an overview of the system
and report on the effect of several system components on
the recognition performance. The paper is organized as fol-
lows. Section 2 describes the acoustic front-end of the rec-
ognizer. Section 3 is on the acoustic modelling. The search
procedure is described in Section 4. Experimental results
on the ARPA Wall Street Journal database are reported in
Section 5. A summary is given in Section 6.

2. ACOUSTIC FRONT-END

In the following, we describe the acoustic front-end for
speech sampled at 16 kHz [14]. Every 10 ms, a Hamming
window is applied to preemphasised 25-ms segments and a
1024-point fast Fourier transform is performed. The mag-
nitude spectrum is warped according to the mel scale. The
obtained spectral magnitudes are integrated within 20 trian-
gular filters arranged on the mel-frequency scale. The mid-
frequency of filtern is n=2 � 270:48 and the bandwidth is

270.48 for all filters. The filter output is the logarithm of
the sum of the weighted spectral magnitudes. A decorrela-
tion by a discrete cosine transform is performed. 16 mel-
frequency cepstral coefficients (MFCC) are computed from
20 filter outputs. Augmenting the 16 cepstrum coefficients
by 16 first-order linear regression coefficients and 1 second-
order coefficient gives a vector with a dimension of 33. The
linear regression coefficients are calculated over a window
covering 5 neighboring cepstrum vectors. To suppress chan-
nel distortions, a mean normalisation is carried out.

Finally, a LDA [5] with classes defined as states is ap-
plied. 3 successive 33-dimensional vectors from timest�1,
t andt + 1 are adjoined to form a large input vector with a
dimension of 99. A gender-independent transformation ma-
trix reduces the dimension of this vector from 99 to 33.

The system also contains a component for vocal tract
normalization (VTN) [6]. The training procedure using VTN
is as follows. Intermediate models with a small number of
densities per state are estimated from the unwarped features
of all training speakers by maximum likelihood (ML) train-
ing. For each training speaker, a warp scale is chosen as
the scale for which the training data of this speaker achieve
the greatest likelihood, given the transcriptions and the in-
termediate models. The final acoustic models to be used
for recognition are trained on the warped utterances by ML
training. In recognition, we use a preliminary transcription
of the test sentence for the warp scale selection.

3. ACOUSTIC MODELLING

Triphone acoustic models are represented by continuous den-
sity hidden Markov models. Each model contains 3 seg-
ments with 2 states each. Forward, skip and loop transitions
between the states are allowed. The states of a segment
share the same emission probability distribution, which are
also shared among the segments of different triphones by
using state tying, as will be explained later. The emission
probabilities are represented by Gaussian or Laplacian mix-
ture densities. Covariances are modeled by a single diago-
nal matrix pooled over all mixtures. The number of com-
ponent densities per mixture differs between the states and
is automatically adjusted during the training phase, as will
be described later. The phoneme inventory consists of 44
phonemes including one phoneme for silence with a single
state.



3.1. Maximum Likelihood Training
The parameters of the emission probabilities are trained us-
ing the maximum likelihood criterion together with sev-
eral approximations: Only the best state sequence is used
(Viterbi approximation). For the calculation of the emission
probabilities during time alignment, the sum over all com-
ponent densities of a mixture is approximated by the maxi-
mum. For parameter estimation, each observation vector is
assigned to the density of a mixture which gives the highest
probability. The transition probabilities are not trained but
set to a constant value which depends only on the type of
the transition.

Each iteration of the training procedure consists of time
alignment by dynamic programming followed by parame-
ter estimation. In order to increase the acoustic resolution,
a splitting step is carried out typically after every 6 itera-
tions. If for a specific density the average log-likelihood
score over all observations assigned to this density is larger
than the average log-likelihood score over all densities, this
density is split by replacing the mean vector by two small
disturbed versions of it. As a result, the number of densi-
ties of a mixture depends on the actual distribution of the
observation vectors assigned to a mixture.

This training procedure is sped up by two refinements:
to cut down computation time for time alignment, a sort
of beam search with a data-adaptive adjustment window is
used. As a result, only about 15 states per time frame are
evaluated. Also, a time alignment is performed typically
only every 3 iterations, since time alignment paths from pre-
vious iterations can be used.

For starting from scratch, the training procedure can be
initialized by a linear segmentation. Each training utterance
is automatically segmented into 3 parts [3] which are si-
lence at the beginning of the utterance, speech and silence
at the end of the utterance. Then the frames belonging to the
speech segment are linearly assigned to the corresponding
states and the frames of the silence segments are assigned
to the silence model.

3.2. State Tying
To calculate an appropriate state tying for the different cor-
pora, simple Gaussian distributions are estimated for ev-
ery triphone state using a precalculated segmentation of the
acoustic data. These models are then used to calculate the
tying. For the tying the system is able to use two different
methods as described in [2, 16, 17]. The baseline method
is decision tree based and works in a top-down fashion. It
starts with all triphone states with the same central phoneme
and the state number in one cluster and then splits these
clusters using phonetic questions on the central phoneme
and the context of the triphone states. The result is the de-
sired number of state clusters and phonetic decision trees
which assign the triphone states to their clusters. Unseen
triphones are assigned to appropriate states using the pho-
netic decision trees so no additional backing-off models are
needed. The second method is purely data-driven. The tri-

phone states are sorted due to the central phoneme of the tri-
phone and to the state number. Then the states are clustered
together using a bottom-up-strategy until the desired num-
ber of states is reached. These states are then re-estimated
with a higher acoustic resolution. For unseen triphones ad-
ditional monophone models are trained which are used for
backing-off. The advantage of this method is that no pho-
netic questions are needed e.g. in case of switching to a new
corpus.

3.3. Cross-Word Models
A recent improvement to the system is the use of cross-word
models [9]. Cross-word models enhance the acoustic mod-
elling of a word boundary by fully incorporating the knowl-
edge of the phonemes and the degree of coarticulation at
this boundary. The implementation of cross-word models
for our system is rather straightforward. During each train-
ing iteration, the lengths of the between word silences are
estimated and then the appropiate triphones for the word
boundaries are used according to a silence length threshold.
No specific silence models or the like are used.

For recognition, we use a three-pass strategy. In the first
pass, a word lattice is constructed using only within-word
models. Using this lattice, in the second pass then best
sentences are calculated and in the third pass thesen best
sentences are rescored using the cross-word models. The
between-word silence information of the first recognition
pass is used to determine which triphone models have to be
used at word boundaries.

3.4. Pronunciation Variants
Another important new feature of the system is the incorpo-
ration of pronunciation variants. These variants are man-
ually transcribed by an expert listening to the respective
training corpus. During training, an optional variant recog-
nition pass is able to detect which variant was spoken in the
training corpus. This variant recognizer uses simple mono-
phone models with only 2-4 densities per mixture to keep
the acoustic models from learning the pronunciation vari-
ants. For every sentence in the training corpus, it deter-
mines a pronunciation variant for the words in the sentence.
This information can then be used to reestimate the mono-
phone models of the variant recognizer which also improves
the variant recognition and so on. After 2-3 iterations this
procedure converges. Then a conventional acoustic training
is performed which regards the precalculated information
about the pronunciation variants.

During recognition, all variants are added to the tree lex-
icon, a mapping function identifies the pronunciation vari-
ant with the appropiate lexical word in the language model.
No weighting of the variants of a word is used.

4. THE SEARCH METHOD

In this section, we describe the main characteristics of the
baseline search approach used in the RWTH speech rec-
ognizer. The search method is based on a strictly time-



synchronous left-to-right beam search strategy connected
with a tree-organized pronunciation lexicon (lexical prefix
tree) [7]. The incorporation of a bigram or a more com-
plex language model requires copies of the lexical prefix
tree since the identity of a word is only known at a leaf
of the tree. Thus, in the standard system we use word-
conditioned copies of the lexical prefix tree, e.g. for a bi-
gram language model the copies depend on the immediate
predecessor word.

4.1. Standard Pruning Approach
The standard pruning approach which is used in the so-
called word-conditioned lexical tree search method consists
of three pruning steps: acoustic pruning, language model
pruning and histogram pruning. Acoustic pruning (stan-
dard beam search) eliminates all state hypotheses with a
score relatively worse to the best active state. Language
model pruning is only applied to tree start-up hypotheses
and works in a similar way as acoustic pruning. Histogram
pruning confines the number of active states to a maximum
number [13]. To further improve the efficiency of the prun-
ing process look-ahead pruning techniques are used, e.g.
language model look-ahead and phoneme look-ahead. In
all experiments presented in this paper, we applied only a
bigram language model look-ahead. This bigram language
model look-ahead pruning is based on an on-demand com-
putation of the factored bigram probabilities using a com-
pressed language model look-ahead tree [11].

4.2. Fast Likelihood Calculation Method
A fast likelihood calculation method is used to reduce the
computational effort of the mixture densities calculations in
the system [12]. The method combines the preselection VQ
method with the so-called projection search algorithm. This
methods works as follows: In a first step, the VQ method
is used to get a coarse preselection of the prototype vec-
tors of the densities. Then, the selected prototype vectors
can by further confined by considering only vectors which
are located inside a ‘hypercube’ centered at a given acous-
tic observation vector. These vectors are then evaluated in
the log-likelihood computation procedure. By this fast like-
lihood calculation, the real time factor of the recognition
system described (20k vocabulary) is reduced from 10 to
2.5 on an ALPHA 5000 PC (SpecInt‘95: 15.4).

4.3. Word Graph Generation
The concept of the word conditioned tree search method for
determining the single best sentence can be extended to pro-
duce high quality word graphs [1, 10]. The advantage of a
word graph is that the computationally expensive acoustic
recognition task can be decoupled from the application of
a complex language model in a subsequent post-processing
step or for computing then-best sentence hypotheses. The
generation of word graphs is based on the word pair approx-
imation which fits directly into the word conditioned tree
search method using a bigram language model. In addition,
pruning is used to reduce the number of word arcs in the

Table 1: Effect of LDA on the word error rates for Gaus-
sian and Laplacian densities (WSJ0 5k Nov.‘92 dev/eval
test sets: 10/8 speakers, 410/330 sentences, 6779/5353
spoken words; bigram language model with a perplexity
of 107; gender-dependent models; deletions (del), inser-
tions (ins) and word error rate (WER) in %).

Models LDA #dens (m+f). del – ins WER
no 68k+70k 1.5 – 0.7 7.6Gaussians
yes 68k+82k 1.3 – 0.8 6.9
no 61k+58k 1.4 – 0.8 8.0Laplacians
yes 75k+86k 1.3 – 0.7 7.1

Table 2: Effect of VTN (WSJ0 5k 92 dev/eval, bigram,
gender-independent Gaussians, LDA).

VTN #dens del – ins WER
no 122k 1.4 – 0.7 7.0
yes 140k 1.2 – 0.6 6.1

word graph. This so-called word graph pruning works in a
straight-forward beam search strategy.

4.4. Language Modelling
Our language models are based on the frequency of un-
igrams, bigrams and trigrams in a training corpus. The
event counts are efficiently stored [15] and are used in a
multi-level smoothing approach, using ‘absolute discount-
ing’ with an interpolation between the different language
model levels [8]. All language model parameters are esti-
mated using Leaving-One-Out.

5. EXPERIMENTAL RESULTS

We will now present the results of a series of experiments
that were conducted to optimize the recognition performance
of our system. All experiments were carried out on the
ARPA Wall Street Journal (WSJ) corpus. Training was done
on the WSJ0 84-speaker corpus and testing on the WSJ0
Nov. ‘92 development and evaluation test sets. The recog-
nition lexicon contained 4986 words, for the tests using pro-
nunciation variants 668 variants were added. For the state
tying the number of 23509 triphone states was reduced to
2001 (including silence) by the decision tree based method
using 88 phonetic questions. Recognition was done with a
bigram language model with a perplexity of 107 on the de-
velopment and evaluation data.
A characteristic of the acoustic front-end is the combination
of LDA and cepstrum. We tested the performance of this
combination for both Gaussian and Laplacian densities. Ta-
ble 1 summarizes the results. As can be seen from the table,
LDA reduces the word error rate by approximately 10% for
both Gaussian and Laplacian density functions.
Results for VTN applied in training and recognition are given
in Table 2. In this experiment, we used GI models since
VTN should discard gender-specific variations from the train-
ing data and beneficially exploit the larger training database.
The table shows a reduction in the word error rate from
7.0% to 6.1% due to VTN.



Table 3: Effect of cross-word triphones (WSJ0 5k 92
dev/eval, bigram, gender-dependent Laplacians, LDA).

cross-word triphones #dens (m+f). del – ins WER
no 86k+75k 1.3 – 0.7 7.1
yes 73k+66k 1.0 – 0.8 6.4

Table 4: Effect of pronunciation lexicon (WSJ0 5k 92
dev/eval, bigram, gender-dependent Laplacians, LDA).

lexicon pro. var. #dens (m+f). del – ins WER
baseline no 86k+75k 1.3 – 0.7 7.1
improved ” 92k+74k 1.4 – 0.6 6.9

” rec 92k+74k 1.4 – 0.5 6.5

The results for cross-word triphones are shown in Table 3.
Here the initial number of triphone states was 51118 due
to the additional cross-word triphones. These were also re-
duced to 2001 tied states by the decision tree method. The
error rate of the baseline method is reduced by 10% relative.
Table 4 contains the results for different recognition lex-
icons. Line “baseline” shows the results for our baseline
lexicon. For the “improved” lexicon several corrections of
the word transcriptions were made. These improvements
gave us a reduction of about 3% in word error rate. An ad-
ditional improvement of about 6% was achieved by adding
688 pronunciation variants, about 10% of the overall lexical
size. These pronunciation variants were used only during
recognition, for the training we employed only the canon-
ical pronunciations of the words. However, we found no
further improvement on the WSJ0 5k task by using pronun-
ciation variants also in training

6. SUMMARY

In this paper, we have described the RWTH Aachen large
vocabulary continuous speech recognizer. The system is
based on continuous density hidden Markov models and a
time-synchronous left-to-right beam search strategy. It em-
ploys state-of-the-art techniques such as LDA, decision tree
based state-tying, speaker normalization by VTN, cross-
word models, pronunciation variants, fast likelihood calcu-
lation and word graph rescoring. Experiments on the ARPA
WSJ corpus showed significant performance improvements
due to speaker normalization and cross-word models.
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