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ABSTRACT plied successfully to the analysis of the normalized LMS (NLMS)

- . . .__algorithm 7] and later to the analysis of i-N n al-
Providing a quantitative mean-squared-error analysis ofadaptatlona gorithm [6][7] and later to the analysis of a quasi-Newton a

lqorithms is of ti t for determining thei ful gorithm [8]. In section Il of this paper, the BNDR-LMS algo-
ar?dor; rmsrlr? 0 rigrer? V'v?;'ﬁortﬁnfe | Orrit?nrflrmlrlzn?/v veI: u\zﬁ unntehss rithm is briefly introduced. In section Ill, the model for the input-
and for compariso n other algo S. nowever, when the signal vector is described and discussed, and the mean-squared-
algorithm reutilizes previous data, such analysis becomes very in-

) . .error analysis is carried out. In section IV simulation results are
volved as the independence assumption cannot be used_. In thI?)rovided supporting the analysis. Section V presents conclusions.
paper, a thorough mean-squared-error analysis of the binormal-
ized data-reusing LMS algorithm is carried out. The analysis is
based on a simplified model for the input-signal vector, assuming 2. THE BNDR-LMS ALGORITHM
independence between the continuous radial probability distribu-
tion and the discrete angular probability distribution. Throughout Derivation of the BNDR-LMS algorithm may be carried out from
the analysis only parallel and orthogonal input-signal vectors are an optimization perspective, or from a geometrical perspective.
used in order to obtain a closed-form formula for the excess mean-We will briefly present the algorithm together with a derivation
squared error. The formula agrees closely with simulation results based on the first approach.
even when the input-signal vector is a delay line. Furthermore, the  Let S(k) denote the hyperplane which contains all vectars
analysis can be readily extended to other algorithms with expectedsuch thate” (k)w = d(k). The solution given by the BNDR-

similar accuracy. LMS algorithm,w(k + 1), is the one which belongs (k) and
S(k — 1) and is at a minimum distance from(k), i.e., the one
1. INTRODUCTION which solves
Increasing speed of convergence of adaptive filters invariably im- min_[lw(k + 1) — w(k)||” (1)

) Lo . . . wW(k+1)
plies a corresponding increase in computational complexity of

the adaptation algorithm. In many applications, gradient-type al- sypjected to
gorithms are not fast enough for a satisfactory performance and
Newton-type algorithms are too complex for the given sampling 2" (K)w(k + 1) = d(k) 2)
frequency [1]. In these situations, a compromise solution may
be the one which attempts to improve speed of convergence ofgnd
a gradient-type algorithm while keeping the extra computation to
a minimum. The data-reusing LMS (DR-LMS) algorithm is one mT(k —Dw(k+1)=dk-1) 3)
approach that reutilizes available data repeatedly as many times
as possible in order to achieve faster convergence as compared t@he functional to be minimized is, therefore,
the conventional LMS algorithm [2]. Improvements to the DR-
LMS-algorithm performance can be obtained with an optimized flw(k +1)] = ||Jw(k + 1) — w(k)|
step-size (e.g., NNDR-LMS and UNDR-LMS algorithms [3]). T

The binormalized data-reusing LMS (BNDR-LMS) algorithm +Ald(k) -2 (K)w(k +1)]
was introduced and briefly analyzed in [4] and [5]. Superior per- + Xo[d(k —1) — 2" (k — Dw(k +1)] (4)
formance to that of other data-reusing algorithms may be expected
due to normalization in orthogonal directions obtained from cur- which, for linearly independent input-signal vectargk) and

2

rent and previous data vectors [4][5]. xz(k — 1), has the unique solution
In this paper, a thorough analysis of the mean squared error
(MSE) for the BNDR-LMS algorithm is carried out by using a sim- wk+1) = w(k) + ﬁm(k) " ﬁm(k ~1) ®)

plified model for the input-signal vector. The model was first ap- 2 2



where where

A [dk) — 2" (Rwk)]llz(k — 1) A= z(k)z” (k)z(k - D2’ (k- 1)
2 [le(®)Pll=z(k - DI - [« (k)z(k - 1)]” lz(®)[*|lz(k = DI? = [2* (k)2 (k - 1)]?
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(k= D[Pz (k)=" (k)
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A2 d(k —1) — 2" (k I (k) |IP2(k — V)a" (k —1)
2 ||m[(()||2||m)(k )(||2 [)a: ((k))]“(( o NE T @ Plet— )P - @ Mt —DF D

[d(k) — & (k)w(k)]z" (lz— D (k) % and

le®)Pllek - DIP — [T (Fak - 1P
_ , _ p = B2k = DI” —n(k - Da" (k)z(k—1)
Equations (5)—(7) completely describe the algorithm. lz(®) |2 le(k — D[] — [z (k)z(k — 1)]? z (k)
L k= Dlz®)|” = n(k)z” (k = Da(k) (k—1)
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Analysis of data-reusing algorithms often involves difficulties that . . .

are not present in the analyses of other gradient-type or Newton- Analysis of convergence in the mean showed that the algorithm
type algorithms, for reutilization of previous data vectors pre- described above is unbiased and stable providedithaty, < 2
cludes application of the independence assumption [3]. Cumber- (5]

some expressions for the coefficient-error covariance matrix ren- AlthoughAw (k) converges in average to zerokagoes to infi-

der the ana|ys|s not tractab|e and Consequently, pose d|ﬁ|cu|t|esn|te Wthh CharaCterlzes Unblasedness Of the es’[lmate COhSIStency
for an accurate description of the algorithm performance [3]. This of coefficient estimates can seldom be achieved for nonvanishing
difficulty is overcome in the analysis presented here with the adop- values ofu. In general, an excess of MSE, which depends on the
tion of a simplified model for the input-signal vector which has second-order statistics of vectarw(k), will be present. The ex-
discrete angular probability distribution. The excellent agreement cess of MSE is defined as [1]

between theoretical and simulation results suggests that analysis

based on such model should be extended to other adaptation algo- ~ &eze = lim (k) = &min (14)
rithms.

For the purposes of the analysis, we assume that an unknowrwhereg( k) = E[e? (k)] and&min is the minimum mean-squared
FIR filter with coefficient vector given byw, is to be identified  error due to nonexact-modeling or presence of additive noise, or
by an adaptlve filter of same order employlng the BNDR-LMS bo’[h[l] The d|ﬁerencﬁ£( ) 5( ) gmln is known as excess
algorithm, i.e.d(k) is modeled as in the MSE[1] and can be expressed as

d(k) = 2 (k)w, + n(k) (8) A¢(E) = tr{R cov[Aw(k)]} (15)
wheren(k) is measurement noise. Itis also assumed that input sig-

nal and measurement noise are taken from independent and iden-
tically dlstrlbuted zero mean white Gaussian noise processes withEvaluation of (15) becomes very involved if the input-signal vec-

3.1. The Input-Signal-Vector Model

variances; anda,, respectively. tor is considered a delay line, even after using the independence
We are interested in analyzing the behavior of the coefficient assumption. An interesting alternative is the use of a simplified
vector in terms of a step-size Let model for the input-signal vectat (k) which can be consistent
with the first- and second-order statistics of a general input signal,
Aw(k) = w(k) — w, (9) but has a reduced and countable number of possible directions of

excitation. This model was introduced in [6] and was successfully

be the error in the adaptive filter coefficients as related to the ideal€MPloyed in [7] and [8]. The input-signal vector for the model is
coefficient vector. For the BNDR-LMS algorithm as described in

(5)~(7), Aw(k + 1) is given by z(k) = sire Vi (16)
)\1 A where:
A 1)=A - -1 1
w(k +1) w(k) + p P} (k) + 2 (k )| (10) e s; is =1 with probability of occurrencé/2;

e 7 has the same probability distribution function|af(k)||?,
or, for the case of interest, is a sample of an independent

process withy-square distribution of N + 1) degrees of
Aw(k + 1) = [I + /LA]Aw(k) + pb (11) freedom,E[r,z] — (N + 1)0_‘3;

From (8) and (5)—(7), we have



e V. is equal to one of théV + 1 orthonormal eigenvectors 4. SIMULATION RESULTS

of R, denotedv;,i =1, ..., N + 1. We will also assume
that for a white Gaussian input signa, is uniformly dis- Several simulations were run in order to verify how well the for-
tributed and, consequently, H(-) denotes the probability of ~ mulas obtained describe the behavior of the mean-squared error
occurrence of evert), then when the input-signal vector is a delay line. The application cho-
sen was system identification, where a 63rd-order plant was to be
P(Vi=V) = 1 17) identified by a same-order adaptive filter employing the BNDR-
‘ N+1 LMS algorithm. Additive measurement-noise variance was -60dB

relative to the input-signal variance. The input signal in this case
For the given input-signal model, we may exprésgk+1) as was white Gaussian noise and the excess of MSE was measured

for different values of the step-sizg yaried from 0.1 to 1.9). The
A¢(k+1) = A&(k+1) |m(k)‘|m(k71)p[m(k) | (k —1)] results are depicted in Fig. 1, where we can see a very close match

between theoretical and simulation results, indicating accuracy of

+AL(k+1) |w(k)lm(k—1)P[m(k) La(k-1)] (18) the analysis and suitability of the model used even when the input-

signal-vector angular probability distribution is continuous and not
independent of its radial distribution, as is the case for the delay
line.

Conditionsz (k) || z(k — 1) andx(k) L x(k — 1) in the adopted
model are equivalent t¥;,, = V_, andV # V_1, respec-
tively, for V', andV';,_, can only be parallel or orthogonal to each
other.

It is easy to verify that the BNDR-LMS algorithm behaves ex-
actly like the NLMS algorithm when the input signal vector at in-
stantsk andk — 1 are parallel. In this case, the excess of MSE is 55| ]
given by [7]

I
Y
3

A&(k+ 1)) = [1 + ”](V”i;f)] AL(k) + ﬁ

(19)

—65}

Excess of MSE in dB

wherev, = E[z*(k)/o2] is thekurtosisof the input signal, which -nor

varies from 1 for a binary distribution to 3 for a Gaussian distri-

bution tooco for a Cauchy distribution [7]. It must be stressed, e

however, that (19) holds only for, < N + 1 [7]. 000 DR 0F e oM MR T2
For the case where(k) andxz(k — 1) are always orthogonal,

we have, forR = ¢21, i.e., white-noise input signals (see Ap- Figure 1: Excess of MSE faV = 63 as a function ofu.

pendix A),

¢k +1)1 [ g BN 5. CONCLUSIONS

+u(l—u)Q(u—2)A£(k_1)+ 1 (p—=2)° , (20)

N+ 1 N+2—u, On The BNDR-LMS algorithm was analyzed with respect to the

excess of MSE. The analysis was carried out with the assumption

A final expression for the excess in the MSE may now be ob- that the input-signal vector had discrete angular probability
tained from (19) and (20) combined and weighted accordingly, as distribution independent from the continuous radial probability
suggested in (18). For a white input signal, the probabilities of distribution. The closed-form formula obtained provides accurate

Vi =Vi_iandVy # V_; are equal toN+rl and NLH re- results even when the input-signal vector is a delay line of samples
spectively. The excess in the MSE is, therefore, given by of a white Gaussian process. The accuracy was verified in sim-

ulations for several values of the step-size in the region of stability.
-2
AE(k+1) = [1 + M] AE(k)

N+1 APPENDIX A
Np(l —p)?(u—2) Ak — 1 1. Equation (20):
+ (N +1)2 ¢k —1) In the derivation of (20) (k) andx(k — 1) were replaced by
2 [1 + N(u— 2)2] SkTE Vi andsg_1re—1Vi—_1, respectively, with, L ‘Vk_l.
(’;{ O i 5 )gi (21) Furthermore, a second-order approximationfit /7] was
— Uz used [7], i.e.,
The solution fork — oo provides the magnitude of the excess of 5 [ 1 ] 5 { 1 ]
MSE le®)I2] L=k - 1)
B p(N+1)[1+ N2 -p)?] o2 —BlLil & 1 23)
gezc— 7'2 (N+2—l/)0'2
(N+2- )2 - ) [N +1) — Nu2 — p)] K =)o
(22)

wherev,, is the kurtosis of the input signal.



For R = 021, using (11) and (15) the expression faé (k)
may be rewritten as

Aé(k+ 1) = o2tr (E {[I + pA]Aw(k)
xAw” (k)[I + pA]})
+ o2t (E {M[I + uA]Aw(k)bTD
+oltr (E { ubAw (k)T + pA]})

+ootr (E [qubTD
=p1+p2+ps+pa
(24)
Evaluating each of these terms separately we obtain
p1 = ootr {cov[Aw(k)]}
2 x(k—DaT(k-1)
— pogtrq E
g { [ lz(k = 1)
y Aw(k)AwT(k)] }
llz(k —1)||>

r T
- paitr {E z(k)z

(k)Aw(k)AwT(k)] }
| (k)]
ot [Aw(k)AwT (k)
ot {E lo(k— D)
z(k— 1" (k-1)
llz(k — 1)[> ]}

— uolte [Aw(k)AwT (k)x(k)xT (k)
Host {E _ EGIE ]}

ok = D’ (k= DAw(k)
ek = DI
L AwT (k= 1) (k- )})

(k- )II )*
+u2aitr{E[ k)Aw(k)

x Aw” (k)a(k — 1)z (k — 1)]}
+uloltr {E [m(k ~ 12"k — 1)Aw(k)

waT(k)m(k):cT(k)]

22 (1 2" () Aw(E)
+itatn (o (k) 2T

><A'wT(k)m(l's)a:T(k) )

Nz (k)]I2]?

=1 +P2+---+ 1o

(25)
where

Y1 = Ag(k) (26)

_ (1 -p)? won
V=N M- - e S

(NF1) @7

(1]

R e {0 (28)

Ya=te  and o5 = (29)

Yo =~y (30)

thr =g =0 (31)

o = o AL(h) @)
Therefore,

o= (14 2022 actn

(1—p)? M =2) A1)+ £p=2) »

+ N+1 N+2—v,°"
(33)
Similarly,
2
o w1 o
PP NT2_0)7"
= p3 (34)
_ 2ton
P Nrrom) (39)

From (33)—(35) the difference equation A& (k) is finally
obtained as in (20).
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