
MEAN-SQUARED ERROR ANALYSIS OF THE BINORMALIZED DATA-REUSING LMS
ALGORITHM USING A DISCRETE-ANGULAR-DISTRIBUTION MODEL FOR THE INPUT

SIGNAL

Marcello L. R. de Campos,z Jośe A. Apolińario Jr.,yz and Paulo S. R. Diniz,y

zDepartamento de Engenharia El´etrica
Instituto Militar de Engenharia

Praça General Tib´urcio, 80
CEP 22290-270, Rio de Janeiro, RJ - Brazil

yPrograma de Engenharia El´etrica
COPPE — Univ. Federal do Rio de Janeiro

P. O. Box 68564
CEP 21945-970, Rio de Janeiro, RJ - Brazil

ABSTRACT

Providing a quantitative mean-squared-error analysis of adaptation
algorithms is of great importance for determining their usefulness
and for comparison with other algorithms. However, when the
algorithm reutilizes previous data, such analysis becomes very in-
volved as the independence assumption cannot be used. In this
paper, a thorough mean-squared-error analysis of the binormal-
ized data-reusing LMS algorithm is carried out. The analysis is
based on a simplified model for the input-signal vector, assuming
independence between the continuous radial probability distribu-
tion and the discrete angular probability distribution. Throughout
the analysis only parallel and orthogonal input-signal vectors are
used in order to obtain a closed-form formula for the excess mean-
squared error. The formula agrees closely with simulation results
even when the input-signal vector is a delay line. Furthermore, the
analysis can be readily extended to other algorithms with expected
similar accuracy.

1. INTRODUCTION

Increasing speed of convergence of adaptive filters invariably im-
plies a corresponding increase in computational complexity of
the adaptation algorithm. In many applications, gradient-type al-
gorithms are not fast enough for a satisfactory performance and
Newton-type algorithms are too complex for the given sampling
frequency [1]. In these situations, a compromise solution may
be the one which attempts to improve speed of convergence of
a gradient-type algorithm while keeping the extra computation to
a minimum. The data-reusing LMS (DR-LMS) algorithm is one
approach that reutilizes available data repeatedly as many times
as possible in order to achieve faster convergence as compared to
the conventional LMS algorithm [2]. Improvements to the DR-
LMS-algorithm performance can be obtained with an optimized
step-size (e.g., NNDR-LMS and UNDR-LMS algorithms [3]).

The binormalized data-reusing LMS (BNDR-LMS) algorithm
was introduced and briefly analyzed in [4] and [5]. Superior per-
formance to that of other data-reusing algorithms may be expected
due to normalization in orthogonal directions obtained from cur-
rent and previous data vectors [4][5].

In this paper, a thorough analysis of the mean squared error
(MSE) for the BNDR-LMS algorithm is carried out by using a sim-
plified model for the input-signal vector. The model was first ap-

plied successfully to the analysis of the normalized LMS (NLMS)
algorithm [6][7] and later to the analysis of a quasi-Newton al-
gorithm [8]. In section II of this paper, the BNDR-LMS algo-
rithm is briefly introduced. In section III, the model for the input-
signal vector is described and discussed, and the mean-squared-
error analysis is carried out. In section IV simulation results are
provided supporting the analysis. Section V presents conclusions.

2. THE BNDR-LMS ALGORITHM

Derivation of the BNDR-LMS algorithm may be carried out from
an optimization perspective, or from a geometrical perspective.
We will briefly present the algorithm together with a derivation
based on the first approach.

Let S(k) denote the hyperplane which contains all vectorsw

such thatxT (k)w = d(k). The solution given by the BNDR-
LMS algorithm,w(k + 1), is the one which belongs toS(k) and
S(k � 1) and is at a minimum distance fromw(k), i.e., the one
which solves

min
w(k+1)

kw(k + 1)�w(k)k2 (1)

subjected to

x
T (k)w(k + 1) = d(k) (2)

and

x
T (k � 1)w(k + 1) = d(k� 1) (3)

The functional to be minimized is, therefore,

f [w(k + 1)] = kw(k + 1)�w(k)k2

+ �1[d(k)� x
T (k)w(k + 1)]

+ �2[d(k � 1)� xT (k � 1)w(k + 1)] (4)

which, for linearly independent input-signal vectorsx(k) and
x(k � 1), has the unique solution

w(k + 1) = w(k) +
�1
2
x(k) +

�2
2
x(k � 1) (5)



where

�1
2

=
[d(k)� xT (k)w(k)]kx(k � 1)k2

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2

�
[d(k � 1)� xT (k � 1)w(k)]xT (k � 1)x(k)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2
(6)

and

�2
2

=
[d(k � 1)� xT (k � 1)w(k)]kx(k)k2

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2

�
[d(k)� xT (k)w(k)]xT (k � 1)x(k)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2
(7)

Equations (5)–(7) completely describe the algorithm.

3. MEAN-SQUARED-ERROR ANALYSIS

Analysis of data-reusing algorithms often involves difficulties that
are not present in the analyses of other gradient-type or Newton-
type algorithms, for reutilization of previous data vectors pre-
cludes application of the independence assumption [3]. Cumber-
some expressions for the coefficient-error covariance matrix ren-
der the analysis not tractable and, consequently, pose difficulties
for an accurate description of the algorithm performance [3]. This
difficulty is overcome in the analysis presented here with the adop-
tion of a simplified model for the input-signal vector which has
discrete angular probability distribution. The excellent agreement
between theoretical and simulation results suggests that analysis
based on such model should be extended to other adaptation algo-
rithms.

For the purposes of the analysis, we assume that an unknown
FIR filter with coefficient vector given bywo is to be identified
by an adaptive filter of same order employing the BNDR-LMS
algorithm, i.e.,d(k) is modeled as

d(k) = x
T (k)wo + n(k) (8)

wheren(k) is measurement noise. It is also assumed that input sig-
nal and measurement noise are taken from independent and iden-
tically distributed zero mean white Gaussian noise processes with
variances�2x and�2n, respectively.

We are interested in analyzing the behavior of the coefficient
vector in terms of a step-size�. Let

�w(k) = w(k)�wo (9)

be the error in the adaptive filter coefficients as related to the ideal
coefficient vector. For the BNDR-LMS algorithm as described in
(5)–(7),�w(k + 1) is given by

�w(k + 1) = �w(k) + �

�
�1
2
x(k) +

�

2
x(k � 1)

�
(10)

From (8) and (5)–(7), we have

�w(k + 1) = [I + �A]�w(k) + �b (11)

where

A =
x(k)xT (k)x(k � 1)xT (k � 1)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2

+
x(k � 1)xT (k � 1)x(k)xT (k)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2

�
kx(k � 1)k2x(k)xT (k)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2

+
kx(k)k2x(k � 1)xT (k � 1)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2
(12)

and

b =
n(k)kx(k � 1)k2 � n(k � 1)xT (k)x(k � 1)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2
x(k)

+
n(k � 1)kx(k)k2 � n(k)xT (k � 1)x(k)

kx(k)k2kx(k � 1)k2 � [xT (k)x(k � 1)]2
x(k � 1)

(13)

Analysis of convergence in the mean showed that the algorithm
described above is unbiased and stable provided that0 < � < 2
[5]

Although�w(k) converges in average to zero ask goes to infi-
nite, which characterizes unbiasedness of the estimate, consistency
of coefficient estimates can seldom be achieved for nonvanishing
values of�. In general, an excess of MSE, which depends on the
second-order statistics of vector�w(k), will be present. The ex-
cess of MSE is defined as [1]

�exc = lim
k!1

�(k)� �min (14)

where�(k) = E[e2(k)] and�min is the minimum mean-squared
error due to nonexact-modeling or presence of additive noise, or
both[1]. The difference��(k) = �(k)� �min is known as excess
in the MSE[1] and can be expressed as

��(k) = trfR cov[�w(k)]g (15)

3.1. The Input-Signal-Vector Model

Evaluation of (15) becomes very involved if the input-signal vec-
tor is considered a delay line, even after using the independence
assumption. An interesting alternative is the use of a simplified
model for the input-signal vectorx(k) which can be consistent
with the first- and second-order statistics of a general input signal,
but has a reduced and countable number of possible directions of
excitation. This model was introduced in [6] and was successfully
employed in [7] and [8]. The input-signal vector for the model is

x(k) = skrkV k (16)

where:

� sk is�1 with probability of occurrence1=2;

� r2k has the same probability distribution function ofkx(k)k2,
or, for the case of interest, is a sample of an independent
process with�-square distribution of(N + 1) degrees of
freedom,E[r2k] = (N + 1)�2x;



� V k is equal to one of theN + 1 orthonormal eigenvectors
of R, denotedVi, i = 1; : : : ; N + 1. We will also assume
that for a white Gaussian input signal,V k is uniformly dis-
tributed and, consequently, ifP (�) denotes the probability of
occurrence of event(�), then

P (V k = Vi) =
1

N + 1
(17)

For the given input-signal model, we may express��(k+1) as

��(k + 1) = ��(k + 1)
��
x(k)kx(k�1)P [x(k) k x(k � 1)]

+ ��(k + 1)
��
x(k)?x(k�1)P [x(k) ? x(k � 1)] (18)

Conditionsx(k) k x(k� 1) andx(k) ? x(k� 1) in the adopted
model are equivalent toV k = V k�1 andV k 6= V k�1, respec-
tively, forV k andV k�1 can only be parallel or orthogonal to each
other.

It is easy to verify that the BNDR-LMS algorithm behaves ex-
actly like the NLMS algorithm when the input signal vector at in-
stantsk andk � 1 are parallel. In this case, the excess of MSE is
given by [7]

��(k + 1)k =

�
1 +

�(�� 2)

N + 1

�
��(k) +

�2�2n
(N + 2� �x)

(19)

where�x = E[x4(k)=�4x] is thekurtosisof the input signal, which
varies from 1 for a binary distribution to 3 for a Gaussian distri-
bution to1 for a Cauchy distribution [7]. It must be stressed,
however, that (19) holds only for�x � N + 1 [7].

For the case wherex(k) andx(k � 1) are always orthogonal,
we have, forR = �2xI, i.e., white-noise input signals (see Ap-
pendix A),

��(k + 1)? =

�
1 +

�(�� 2)

N + 1

�
��(k)

+
�(1 � �)2(�� 2)

N + 1
��(k � 1) +

�2(�� 2)2

N + 2� �x
�2n (20)

A final expression for the excess in the MSE may now be ob-
tained from (19) and (20) combined and weighted accordingly, as
suggested in (18). For a white input signal, the probabilities of
V k = V k�1 andV k 6= V k�1 are equal to 1

N+1
and N

N+1
, re-

spectively. The excess in the MSE is, therefore, given by

��(k + 1) =

�
1 +

�(�� 2)

N + 1

�
��(k)

+
N�(1� �)2(�� 2)

(N + 1)2
��(k � 1)

+
�2

�
1 +N(�� 2)2

�
(N + 1)(N + 2� �x)

�2n (21)

The solution fork ! 1 provides the magnitude of the excess of
MSE

�exc =
�(N + 1)

�
1 +N(2� �)2

�
�2n

(N + 2� �x)(2� �) [(2N + 1)�N�(2� �)]
(22)

4. SIMULATION RESULTS

Several simulations were run in order to verify how well the for-
mulas obtained describe the behavior of the mean-squared error
when the input-signal vector is a delay line. The application cho-
sen was system identification, where a 63rd-order plant was to be
identified by a same-order adaptive filter employing the BNDR-
LMS algorithm. Additive measurement-noise variance was -60dB
relative to the input-signal variance. The input signal in this case
was white Gaussian noise and the excess of MSE was measured
for different values of the step-size (� varied from 0.1 to 1.9). The
results are depicted in Fig. 1, where we can see a very close match
between theoretical and simulation results, indicating accuracy of
the analysis and suitability of the model used even when the input-
signal-vector angular probability distribution is continuous and not
independent of its radial distribution, as is the case for the delay
line.
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Figure 1: Excess of MSE forN = 63 as a function of�.

5. CONCLUSIONS

The BNDR-LMS algorithm was analyzed with respect to the
excess of MSE. The analysis was carried out with the assumption
that the input-signal vector had discrete angular probability
distribution independent from the continuous radial probability
distribution. The closed-form formula obtained provides accurate
results even when the input-signal vector is a delay line of samples
of a white Gaussian process. The accuracy was verified in sim-
ulations for several values of the step-size in the region of stability.

APPENDIX A

1. Equation (20):
In the derivation of (20)x(k) andx(k�1) were replaced by
skrkVk andsk�1rk�1Vk�1, respectively, withVk ? Vk�1.
Furthermore, a second-order approximation forE[1=r2k] was
used [7], i.e.,

E

�
1

kx(k)k2

�
= E

�
1

kx(k � 1)k2

�

= E

�
1

r2
k

�
�

1

(N + 2� �x)�2x
(23)

where�x is the kurtosis of the input signal.



ForR = �2xI, using (11) and (15) the expression for��(k)
may be rewritten as

��(k + 1) = �2xtr (E f[I + �A]�w(k)

��wT (k)[I + �A]
o�

+ �2xtr
�
E
n
�[I + �A]�w(k)bT

o�

+ �2xtr
�
E
n
�b�wT (k)[I + �A]

o�

+ �2xtr
�
E
h
�2bbT

i�

= �1 + �2 + �3 + �4
(24)

Evaluating each of these terms separately we obtain

�1 = �2xtr fcov[�w(k)]g

� ��2xtr

�
E

�
x(k � 1)xT (k � 1)

kx(k � 1)k2

�
�w(k)�wT (k)

kx(k � 1)k2

��

� ��2xtr

�
E

�
x(k)xT (k)�w(k)�wT (k)

kx(k)k2

��

� ��2xtr

�
E

�
�w(k)�wT (k)

kx(k � 1)k2

�
x(k � 1)xT (k � 1)

kx(k � 1)k2

��

� ��2xtr

�
E

�
�w(k)�wT (k)x(k)xT (k)

kx(k)k2

��

+ �2�2xtr

�
E

�
x(k � 1)xT (k � 1)�w(k)

[kx(k � 1)k2]2

�
�wT (k)x(k � 1)xT (k � 1)

[kx(k � 1)k2]2

��

+ �2�2xtr
n
E
h
x(k)xT (k)�w(k)

��wT (k)x(k � 1)xT (k � 1)
io

+ �2�2xtr
n
E
h
x(k � 1)xT (k � 1)�w(k)

��wT (k)x(k)xT (k)
io

+ �2�2xtr

�
E

�
x(k)xT (k)�w(k)

[kx(k)k2]2

�
�wT (k)x(k)xT (k)

[kx(k)k2]2

��

=  1 +  2 + � � �+  9
(25)

where

 1 = ��(k) (26)

 2 = �
�(1� �)2

(N + 1)
��(k � 1)�

�3�2n
(N + 2� �x)

(27)

 3 = �
�

(N + 1)
��(k) (28)

 4 =  2 and  5 =  3 (29)

 6 = �� 2 (30)

 7 =  8 = 0 (31)

 9 =
�2

N + 1
��(k) (32)

Therefore,

�1 =

�
1 +

�(�� 2)

N + 1

�
��(k)

+
(1� �)2�(� � 2)

N + 1
��(k� 1)+

�3(�� 2)

N + 2� �x
�2n

(33)

Similarly,

�2 =
�2(1� �)

(N + 2� �x)
�2n

= �3 (34)

�4 =
2�2�2n

(N + 2� �x)
(35)

From (33)–(35) the difference equation for��(k) is finally
obtained as in (20).
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