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ABSTRACT

Level-sets provide powerful methods for the segmentation of de-
formable structures. They are able to handle protrusions and spe-
cific topological effects. In this work a particle system formulation
of level-sets is introduced. It keeps all the advantages of the level-
set approach for the segmentation of deformable structures, while
it overcomes some of its drawbacks. In this approach the level-sets
are controlled by particles, which is of particular interest for inter-
active control. The particle system records the internal energy of
the level-set, while the external force field comes from image data.
The energy minimization process is fast, stable and robust. The
use of skeleton techniques provide a reliable intialization of the
particles, and it is coherent with simple affine motion. The paper
is illustrated by examples coming from real image sequences.

1. INTRODUCTION

Level-sets segmentation methods have drawn specific attention these
past few years ([5, 7]). Level-sets are active contours particular-
ily designed to handle the segmentation of deformable structures.
They display interesting elastic behaviours, and can handle topo-
logical changes. In their classical formulation, they are computed
by solving second-order partial differential equations using so-
phisticated numerical resolution procedures ([5]). Classical snake
methods use spline curves to model the boundary of an object
([3, 2, 1]). In the level-set formulation however, the boundary of
an object is modelled by a deformable curve front whose propaga-
tion speed is a function of curvature. In the level-set framework,
the curve is the iso-contour of a potential function.

In this study we are interested in solution methods that can be
incorporated in an operational context. In such a context, interac-
tivity is an important matter, and the data flow can be considerable.
A typical example is a meteorological monitoring system, where
the results of the segmentation must be easily manipulated by an
operator, and the method of segmentation must be fast and robust.
In this case the accuracy of the segmentation should be supervised
by the user, and it is an important matter that the segmentation
process can be driven and adjusted by an operator.

Taking into account these requirements, a new method for
minimizing and operating with level-sets is presented. In this study,
shapes are approximated by particle systems controlling a level-
set. In the classical level-set formulation, curvature is used to
control the evolution of a curve. In the particle system approach
presented here, geometric and physical characteristics are incor-
porated in the particle system which is then responsible for the
evolution of the level-set. The physical properties of the level-set
come from assignements on the internal and external energies of

the particle system. This results in fast and robust approximations,
with adjustable accuracy, since the minimization is performed over
a finite set of particles, instead of computing a minimum in an infi-
nite dimensional space of functions. Interactive control is achieved
through this particle system formulation, as an operator can use
directly the particle system to control the level-set. Most impor-
tantly, specific image-dependent requirements are easily assigned
on the internal and external energies. That permits the use of spe-
cific internal energies for rigid-objects, or visco-elastic energies in
the case of deformable structures. The shape approximation pro-
cess is accomplished by minimizing energy fonctionals. Hence no
partial differential equation is solved, and the shape approximation
process is very robust.

This paper is organized as follows. In section 2 the particle
system formulation of level-set is introduced. In section 3 we dis-
cuss the energy formulation, where internal and external energies
are described. Section 4 focuses on contour extraction and ini-
tialization, where skeleton techiques are used to provide a stable
initialization. In section 5 results are presented. Lastly, the paper
ends with conclusion and perspectives.

2. LEVEL-SETS CONTROLLED BY PARTICLE
SYSTEMS

Level-sets objects are used in computer graphics to represent visco-
elastic behaviours in modelling and animation ([8]). Obviously,
the use of level-sets described only in the form'�1(c) (where'
represents the potential function andc the iso-value) would be of
very limited practical use, since most interesting objects cannot be
described in such a “global” way, i.e. with a single potential func-
tion. Instead, it seems fitting to introduce here the same kind of
local and interactive control as one is encountered in the theory of
splines.

For that matter, a particle system is used to describe a shape.
The particle system is written down in the form of a finite set of
points in the plane:

Y = fP1; :::; Png

each pointPi having a radius of influenceri. The set of particles
Y is usually written as a disjoint union

Y = Y
+ [ Y �

whereY + is the set of positive control points, andY � the set of
negative control points. Negative control points are introduced for
the modelling of concave parts of an object, and also to reduce the



amount of encoding data. The implicit function' is written as

' =
X
i2Y +
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X
i2Y�
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where each implicit function'i is positive. It is possible to provide
different kinds of potential functions'i. Also, it is desirable to
allow the possibility of narrow corners. To achieve this, function
'i is often written in the form

'i =  i � d

whered : X ! IR is a distance function (in the sense of the
classical theory of metric spaces) and i : IR ! IR is a poten-
tial function. In the soft objects formulation, which is the kind of
function i used in this study, one writes:
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1lfd2<1g being the characteristic function of the setfd2 < 1g.
([8]). In the next section, we define internal and external energies
for the level-sets by assigning simple and easily computable ener-
gies on the corresponding particle system.

3. ENERGY FORMULATION

In this section, we introduce an internal energy responsible for
the mutual interaction between the particles, and external energies
coming from a set of extracted pixels.

3.1. The internal energy

The internal potential energy is responsible for the physical be-
haviour of the particle system whenever it is under the influence
of the external force field. Here one clearly needs a visco-elastic
energy, in such a way that the level-set both maintains its con-
nectivity wherever there is no topological change, and is flexible
enough so that its shape matches that of the structure’s boundary.
The generalized coordinates of our particle system are:

� the (xi; yi) cartesian coordinates of each control point (or
particle),

� the radius of influenceri.

The internal energy of the particle system is

U =
1

2

X
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whereUij is the potential responsible of the mutual interaction be-
tween particlesPi andPj . A generalized Lennard-Jones potential

Uij =
(ri + rj)
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is repulsive at short distances, attractive at far distances, and pos-
sesses an equilibrium position in-between. Such an internal energy
is quite satisfactory for the structures encountered in the real im-
ages used in this study for experimentation.

3.2. External energies

An external energy is sought out in order to attract the level-set
towards extracted pixels in an image. A two-term external energy
is introduced.

3.2.1. Contour energy

Minimization of the following contour energy:

Econtour =
X
!2P

('(!)� c)2

whereP is the set of extracted pixels results in a level-set approx-
imating a maximum number of extracted pixels, but it does not
guarantee the approximation those extracted pixels only. Indeed,
the level-set could also approximate many other features in an im-
age. To avoid an iso-contour approximating undesirable features
in an image, a regularizing term must be introduced. It is called
the “collar” energy, and is presented in the next subsection.

3.2.2. Collar energy

Masking positive values of'(P )� c makes it possible to contem-
plate region-based approaches; a simple measure of the level-set
proximity can be formulated this way:

��(P ) = exp�
('(P )� c)2

�2
(1)

��(P ) is maximal (equal to 1) on the iso-contour and decreases
toward zero more or less quickly, as tuned by�.
As for snakes methods, it can be envisaged to make extrema of��
close to the extrema of the image spatial gradient. This would
yet suffer from the same limitations encoutered with snakes: a
close initialization is essential since gradient tends to be unifor-
mally zero within uniform areas. Using distance maps, as sug-
gested by [6, 2], overcomes this problem: distance maps are com-
puted after an initial contour detection. Each locationP is as-
signed the distance to the nearest contour point. This is of course
appropriate if a good quality contour detection can be carried out,
and thus prevents the analysis of textured images. The main advan-
tage is that the distance map gradient always points toward contour
points, even within uniform areas. As a matter of fact, the product
D(P )��(P ) (whereD is the distance map) is minimal at:

� locations far from the level-set (small values of��)

� locations close to the level-set (other values of��) and
close to the image contours (D(P ) small).

The following external energy, defined on an imageI

Ecollar(:::; xi; yi; ri; :::) =

Z Z
I

D(P )��(P )d(P )

is therefore minimal if the level-set fits the image contours. The
parameter� within the function�� can be viewed as a tolerance
parameter: it is used to produce a tubular neighbourhood around
the level-setf' = cg, as small values of� causes the proxim-
ity mask to be a narrow area around the iso-contour, and thus the
minimum ofEcollar corresponds to a faithfull representation of
contour points. On the contrary, more tolerant approximations are
obtained using higher values of�. See figure 1. This can be help-
ful if the noise on the image generates many false contours. The
definition of the external energy is yet insufficient to achieve an op-
erational tracking method. Later sections are devoted to the actual
implementation of the implicit framework on image data. Refer
to the table at the end of section 4 for the values of the various
parameters used in the computation of the images.



Figure 1:Plot of�� for � = 0:2. The tubular regions corrspond to pixels where

�� is grater to 0.8, 0.5 and 0.2 respectively. Background: distance map. Some

particles are visible, and the irregular contour is the result of contour extraction on a

cloud image (see section 4).

3.2.3. Total energy

The total energy is the sum of the internal and external energies:

E = �Eint + �Econtour + Ecollar

�, � and being weighing parameters. Since that total energy
is a simple function of the geometrical attributes of the particle
system -the control points locationsxi, yi, and the radii of influ-
enceri- a simple and robust minimization procedure consists in
using a conjugate gradient method, because the partial derivatives
are explicitely computed. Note that the minimization process is
performed over the finite set of particles.

4. CONTOUR EXTRACTION AND INITIALIZATION

4.1. Contour extraction

During the contour extraction preprocessing step, sets of pixels are
extracted. They are used for the contour energy and for the dis-
tance map information used in the collar energy. Since operational
feedback is an important matter in our applicative domain (mainly
meteorological image sequences), we expect to maximize the de-
tection of true edges, and minimize false edge detection. Some
true edges may not be detected, and pixels corresponding to par-
asitic edges may also be kept by the contour extraction process.
One expects the collar energy to be useful for these “false” pixels.
Moreover contour extraction should be fast and robust, and user
interaction should ideally be minimized during the preprocessing
step.

As already mentionned, meteorological image sequences serve
as the main applicative domain on which this study has been tested.
Hence we use extensively some properties of clouds in the prepro-
cessing step: altitude is highly correlated to grey level values. As
a matter of fact, a simple thresholding of the image yields a set of
locations very likely to be clouds and a first and rather good ap-
proximation of clouds’ shape. This has been tested on a 24 hours
Meteosat sequence (48 images) provided by the Laboratoire de
Meteorologie Dynamique (LMD): clouds are always detected by
selecting low radiance pixels, i.e. pixels with gray level above 0.7
on a scale ranging from 0 to 1. Some small unwanted structures
are also detected, which are discarded using a size criterion: areas

with contour length greater than 100 pixels are kept, the others are
discarded. Once some clouds points have been selected, a standard
region growing algorithm is performed to finally obtain the clouds’
contours.

4.2. Initialization

The initialization process is a key component in the overall implicit
particle system approximation, because any proper initialization of
the first particles (and their radii of influence) drives markedly the
quality of the convergence towards the boundary of the structure.
To set up a robust initialization process, one must rely on easily
computable features in the image data.
For that matter, we use the skeleton of the distance map. By skele-
ton we mean here the extrema of the distance map. (See figure 2).
The implementation of the distance map skeleton is the one de-
scribed in [4]). This choice is dictated by the fact that the distance
map plays an important role in the external force field, and because
any (interior) skeleton’s complex features give a fine indication of
the structure’s complexity. For instance, terminal points located at
the branches’ extremities indicate protrusions. Consequently we
put positive control points located at the skeleton’s branches’ ex-
tremities, with a radius equal (to a pre-assigned threshold) to its
distance from the contour.

In figure 2 is shown the result of contour extraction and the
associated skeleton.

Figure 2:Frames 28 of the sequence, contour extraction (top), associated distance

map skeleton (bottom).

This section is ended by the following table in which the reader
will find the value of some key parameters used in the minimiza-
tion process for the images displayed so far.



Indicative parameters values
parameter description value
� internal energy weight 10�3

�,  external energy weight 1.0
� parameter in�� tolerance factor 10�2

5. EXPERIMENTS

The techniques described herein are applied on a meteoroloical
real image sequence provided by LMD. It is an image sequence of
clouds over Eastern Africa. Initialization is performed on the first
image, then minimization is applied, and the result of the mini-
mization processed is given as an initialization for the next image.
Results are shown in figure 3. One can see that topological effects
such as merging are correctly handled with this method. Also, as
it is visible in figure 3, the conjugate gradient algorithm makes it
possible to automatically add particles in the vicinity of a control
point for which the contour energy is the strongest. To do so, the
contributions of each particle to the contour energy are recorded
separately. A new particle is added to the particle having the high-
est contribution: that particle is added in the direction of the gra-
dient of the energy at that point. This permits the use of a small
particle system, as new particles are added if necessary.

As a matter of fact, experimentation shows that the initializa-
tion scheme presented in the previous section is quite robust w.r.t.
simple synthetic motion. We are currently using particle systems
and level sets to perform analysis of motion.

6. CONCLUSION

The proposed method can be considered as an application driven
level-set approach: it preserves the advantages of the classical for-
mulation (handling complex shapes, topology changes, etc...) and
has more flexibility to be used in an operational context. This
adaptation faculty is a consequence of the formulation as a parti-
cle system: it makes it possible to define various internal energies,
adapted to different types of motion (rigidity, viscosity, etc...); just
as the external energy can be adapted to image data: region-based
or contour based approaches are easily implementable.

In a work in progress, the model is modified in order to per-
mit hierarchical refinement, and automatic addition or deletion of
particles during the minimization process. We are also using the
particle system to analyze motion in an image sequence.
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