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ABSTRACT

The importance of lattice structures in connection with fil-
tering and prediction has been known for decades. The
demand for faster processing has led to steadily increas-
ing sampling rates, and as a result the behavior of the dis-
crete filters as the sampling period tends to zero has become
an important theoretical and practical issue. One way of
solving the numerical problems that arise in the usual filter
structures when the sampling period becomes small com-
pared with the dynamics of the underlying physical pro-
cesses is to resort to� operators instead of delay operators.
Although the interrelations between the continuous and dis-
crete lattice structures have been rarely studied, it is known
that the� lattice naturally leads to a continuous form as the
sampling rate increases. This paper addresses this point and
establishes the rate of convergence of the discrete lattice fil-
ter to the continuous filter as a function of the sampling pe-
riod or of the filter order.

1. INTRODUCTION

The importance of discrete and continuous lattice structures
in connection with digital signal processing in general, and
filtering, autoregressive modeling, and prediction in partic-
ular, has been well known for decades [4,6].

The digital signals processed by the discrete lattice fil-
ters, as in the case of other digital filters, are often obtained
by sampling some continuous-time signal. However, the
asymptotic behavior of the digital system at high sampling
rates is rarely studied.

This is an important theoretical and practical issue, be-
cause the demand for faster processing has led to steadily
increasing sampling rates, and most traditional numerical
algorithms become increasingly ill-conditioned as the sam-
pling rate increases.

One way of solving the numerical problems that arise
in the usual processing structures when the sampling period
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tends to zero is to resort to� operators instead of delay op-
erators [1–3, 10]. Although the interrelations between the
continuous and discrete lattice structures have been rarely
studied, it is known [10] that the� lattice naturally leads to
a continuous form as the sampling rate increases.

We follow the notation and terminology used in [10].
The bar in�x(k) or �xk is used to avoid an explicit reference
to the sampling period�: �x(k), or �xk, are shorthands for
x(k�). The duration of the observation interval,[t�T; t], is
T (below we will takeT = 1 for simplicity). The observed
signaly is the sum of a unknown signals in white noisev.
The prediction / smoothing problem consists in predicting
s at a specific timet, giveny for all t 2 [t � T; t]. It is
assumed thats is zero-mean wide sense stationary, and that
s andv are uncorrelated. The covariance ofs is known, and
denoted byW (�) (in the continuous case) or�Wi (discrete
case). The estimatês of s, given the observed signal, is

ŝ(t) = �

Z t

t�T

A(T; t� �)y(�) d�; (1)

or, in the discrete case,

�̂s(k + 1) = �

NX
i=1

�Ki �eb(i� 1; k);

where �Ki are the reflection coefficients, the�eb are the back-
ward residuals, andA(T; �) or simplyA(�) defines the con-
tinuous time prediction filter (see [10]). The Levinson pre-
dictor is optimum in the mean square sense and works in
terms of a weighted sum of past values of the measurement
signaly,

�̂s(k + 1) = �

NX
i=1

�aNi �y(k � i+ 1);

and the weights�aN can be obtained by solving the Yule-
Walker equations. They are also called the reflection coef-
ficients, since�aNN corresponds to the coefficient�KN in the
lattice filter.



Weller et al. [10] define the� scaled variables

�A(N; i) :=
�aNi
�

; 1 � i � N;

and �AN+1
N+1 =

�KN+1=�. In terms of these variables one has

ŝ(k + 1) = �

NX
i=1

�A(N; i)�y(k � i+ 1)�;

which should be compared with (1).
It was shown by Welleret al. [10, Theorem 5.1] that,

under certain conditions and withN� = T ,

lim
N!1

kA(�)� �A�(�)k1 = 0; (2)

for � = 0;�; : : : ; (N�1)�. Here, �A� is a continuous-time
piecewise constant function constructed from the�A(N; i) in
the following way:

�A�(�) =

�
�A(N; i); � 2 [(i� 1)�; i�]; 0 < i < N
�A(N;N); � 2 [(N � 1)�; T ]:

This leaves open one important question: how rapidly does
�A� converge toA as� ! 0?

This paper addresses this point and establishes the rate
of convergence of the discrete lattice filter to the continuous
filter, as a function of the sampling period� or of the filter
orderN . Our results show that the convergence of (2) can
be at leastO(1=N) in theL1 norm.

Weller et al. constructed a piecewise constant function
out of the solution to the discrete time problem, and then
showed that this function converges to the solution of the
continuous time problem, whereas we discretize the solu-
tion to the continuous time problem, and then show that the
vector obtained solves the discrete time equations with a
maximum error ofO(1=N). The result holds independently
of the nature of the sampling functionals that yield�Wi out
of W (�), that is, independently of how the underlying con-
tinuous process is sampled.

2. RESULTS

The symbolkfk1 denotes theL1 norm of the functionf ,
that is, the essential supremum of its absolute value,

kfk1 = sup
x

jf(x)j:

LetP be a partition of the intervalI = [0; 1], that is, a finite
set of pointsfxig1�i�N such that0 � x1 < x2 < x3 : : : <
xN � 1. Given a partitionP and a functionf one may
consider the quantity

Q(P; f) =
X
i

jf(xi)� f(xi�1)j;

which, for that givenf , may or may not have an upper
bound with respect to all finite partitionsP . If it has such an
upper bound we writef 2 BV , and say thatf is of bounded
variation. The least upper bound ofQ(P; f) with respect to
all finite P is the variation off in I = [0; 1], denoted by
V (f).

Every continuous monotonic function defined onI =
[0; 1] is of bounded variation, and its total variation isjf(1)�
f(0)j. The continuity is not essential (any BV function has
a finite derivative almost everywhere, that is, with the pos-
sible exception of a set of zero Lebesgue measure).

Consider the integral equation

W (�)+�A(�)+

Z T

0

A(�)W (���) d� = 0; � 2 [0; T ];

whereW (the covariance function) is known andA (the
continuous time filter) is unknown (this is an example of
a Fredholm integral equation of the second kind). The max-
imum value of the covariance functionW is assumed at the
origin, that is,kWk1 = W (0). It is assumed that the pa-
rameter� satisfies� > W (0), to ensure that the solution
A to the integral equation exists. For an introduction to
integral equations and functional analysis see [5, 7]. Two
well-known classical references on the subject are [8,9].

We recall the mean value theorem for integrals: given a
continuous functionf defined onI = [a; b], there exists a
point� 2 [a; b] such that

Z b

a

f(x) dx = f(�)(b� a):

Let us return to the prediction / smoothing problem and take,
without loss of generality,T = 1 (recall thatT is the dura-
tion of the observation interval). The relationT = N�
becomes, of course,� = 1=N .

We split the intervalI = [0; 1] intoN equal intervalsIk
of length�. By the mean value theorem, there exists inside
each intervalIk a point, denoted by�k, such that, for any
particular�i,

W (�) + �A(�) +
1

N

N�1X
k=0

A(�k)W (� � �k) = 0:

Note that theN pointsf�ig depend upon� , and that the
discretization of the integral isexact.

Assume now that we are given a set ofN samplesA(�i)
of A(�) and that we wish to estimate theL1 norm of the
difference between

1

N

N�1X
k=0

A(�k)W (� � �k)

and Z T

0

A(�)W (� � �) d�:



Based on the previous discretization we reach the conclu-
sion�����

1

N

N�1X
k=0

A(�k)W (� � �k)�

Z T

0

A(�)W (� � �) d�

����� =

�
1

N

N�1X
k=0

jA(�k)W (� � �k)�A(�k)W (� � �k)j

=
V [A(�)W (� � �)]

N

=
V (A)W (0) + V (W )kAk1

N
= O(1=N);

assuming thatA andW are of bounded variation. Note that
although the pointsf�kg depended on� , the final bound
does not. Alternative versions of this result, in terms of the
modulus of continuity of the integrand, could also be de-
rived. Setting� = i� and�k = k� leads to

W (i�)+�A(i�)+
1

N

N�1X
k=0

A(k�)W [(i�k)�] = O(1=N):

However, this does not mean that the vectorA(k�) is an
approximate solution to the Levinson predictor equations

�Wi + 
�aNi +

N�1X
j=0

�Wi�j�a
N
j = 0; (3)

because sampling of the underlying continuous process must
be performed using some kind of averaging pre-filter (di-
rectly samplingy would lead to a discrete-time process of
infinite variance). To avoid this problemW (i�) should be
replaced by some linear functional ofW that preserves the
uncorrelated nature of the signal and noise. Reference [10]
uses

�Wi�j :=
1

�2

Z j�

j���

Z k�

k���

W (t� s) dt ds;

but we will only assume that the functional leads to quanti-
ties ~W satisfying

j ~Wi�j �W [(i� j)�]j = O(1=N): (4)

It follows from this relation that

~Wi + �A(i�) +
1

N

N�1X
k=0

A(k�) ~Wi�k = O(1=N):

Comparing with (3) we see that the vector of samplesA(i�)�
of the solutionA(�) to the continuous time problem is the
solution�aNi of the equations of the discrete time case, up to
a residual ofO(1=N), provided that the sampling functional
~W , independently of its exact nature, satisfies (4).
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