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ABSTRACT

In this paper we address the problem of the joint detec-
tion and estimation of sinusoids embedded in noise, from
a Bayesian point of view. We �rst propose an original
Bayesian model. A large number of parameters has to be
estimated, including the number of sinusoids. No analytical
developments can be performed. This lead us to design a
new stochastic algorithm relying on reversible jump MCMC
(Markov chain Monte Carlo). We obtain very satisfactory
results.

1. INTRODUCTION

Spectral analysis of sinusoids embedded in noise is one of
the most important problem in signal processing, due to
its large number of applications. Bayesian statistical spec-
tral analysis has been initiated by Jaynes and Bretthorst
[4] and successfully applied. The crucial detection problem
has been addressed in [4, 5]. However in those contributions,
analytical approximations are performed. In this paper we
propose an e�cient stochastic algorithm which allows to ob-
tain all the features of interest of the a posteriori probability
distribution, which possesses all the information about the
data including the dimension of the problem, without any
analytical approximation.

2. BAYESIAN MODEL AND OBJECTIVES

This classical problem can be written in the following ma-
trix form [5]:

y = D (!k) ak + nk (1)

where D (!k) is the N � 2k matrix de�ned by
[D (!k)]i;2j�1 = cos [!j;ki] and [D (!k)]i;2j = sin [!j;ki]

(j = 1; : : : ; k and i = 0; : : : ; N � 1), ak ,

( ac1;k as1;k : : : ack;k ask;k )
t
are the amplitudes and

!k , ( !1;k !2;k : : : !k�1;k !k;k )
t
the radial fre-

quencies of the k sinusoids. y is the observation vector
containing N observations and nk is an additive zero-mean
white Gaussian noise with variance �2k.These hypotheses on
the noise can however be relaxed and will be presented in

a future paper. We introduce notation �k =
�
atk;!

t
k; �

2
k

�t
.

Our objective is to estimate k and �k, given the observation
y.
In a Bayesian statistical framework one assumes that the

parameters are distributed according to prior probabilities
which express our degree of belief, or ignorance, for their
di�erent values. We �rst assume the following probabilistic
structure, p (�k) = p

�
�2
�
p (k; ak;!k), that is, the vari-

ance of the noise is independent of k and other parameters.
Then, one can show that under the constraints � , E [k]

and � , 1
N
E
�
akD

t (!k)D (!k) ak
�
, the maximum entropy

principle leads to the joint a priori probability density [1]:

p (k; ak;!k) =
�k

k!
exp (��)

��Dt (!k)D (!k)
��1=2

(2��2)k=2
�

� exp

�
atkD

t (!k)D (!k) ak
�2�2

�
I
k

(!k)

�k

(
k ,

n
!k 2 [0; �)k ; 0 � !1;k < !2;k < ::: < !k;k < �

o
is

a set which removes identi�ability problems and �2 ,

N�/�). We will see in Sect. 5 that these hyperparam-
eters can be tuned in an objective way from the data.
The parameter �2k is a scale parameter, and we thus as-
sume that [3], �2k � IG

�
�0
2
; 0
2

�
which admits the Je�reys'

non-informative prior as a limiting case when �0; 0 ! 0.
(x � D (�) means \x is distributed according to D (�)",
IG (�) is an inverted gamma, N (�) a normal, UA (�) uniform
distribution on A)
The posterior probability distribution is obtained from

Bayes' theorem,

p (�k; kjy) / p (yj �k; k) p (�k; k) (2)

from which it is not possible to obtain closed-form expres-
sion of: (a) the normalizing constant, (b) most of the
marginal distributions, (c) the maximum a posteriori esti-
mate. This stems from the fact that the parameter !k intro-
duces high non-linearity and that the dimension of the prob-
lem is not known. Indeed p (�k; kjy) is de�ned on the union

of subspaces,� = [bN=2c
k=0 �k where�k , R

+�R2k�(0; �)k.
This motivates the two following sections, where we provide
a stochastic algorithm which allows to give a very satisfac-
tory answer to those problems. In particular we address the
problem of the estimation of k.

3. BASICS OF MCMC

MCMC are powerful stochastic algorithm which are
briey presented here. For details and many applica-
tions in statistical signal processing, see [2]. Roughly
speaking, these methods consist in building an ergodic

Markov chain
�
�
(i)

k(i)

�
i2N

, whose equilibrium probabil-

ity distribution is the probability distribution of inter-
est, say � (�). When this Markov chain has converged,
under very mild su�cient conditions [7], ergodic theo-
rems ensure that for any ��integrable function f (�) ;

limn!+1
1

n+1

Pn
i=0 f

�
�
(i)

k(i)

�
= E� (f (�)). MAP value es-

timates can also be obtained. The most famous MCMC al-
gorithms are the Metropolis-Hastings algorithm (MH) and



the Gibbs sampler [7]. These algorithms, in their original
form, do not allow to deal with dimension changes. Green
[6] has provided a general framework to extend the MH
algorithm to address the problem of dimension changes.

The principle of a MH step, is to update �
(i)

k(i)
at it-

eration i by making a proposition of move with a prob-

ability distribution q
�
�
(i)

k(i)
; d��k�

�
and then accept this

proposition �
�
k� with an acceptance probability � =

min

(
1;

�(d��k�)q
�
�
�

k�
;d�

(i)

k(i)

�

�

�
d�

(i)

k(i)

�
q

�
�
(i)

k(i)
;d��

k�

�
)
, or stay at �

(i)

k(i)
. Re-

versibility is a key property of Markov chains, on which
rely for example the classical MH algorithm, that eas-
ily ensures that a given probability distribution � (d�) is
an invariant distribution of the Markov chain [7]. When
considering a MH algorithm on a general state-space (in-
cluding the union of subspaces, as in our case), with

proposal distribution q
�
�
(i)

k(i)
; d��k�

�
Green [6] has out-

lined that reversibility is automatically ensured when one
is able to exhibit a symmetric dominating measure, for

�
�
d�

(i)

k(i)

�
q
�
�
(i)

k(i)
; d��k�

�
and � (d��k�) q

�
�
�
k� ; �

(i)

k(i)

�
where

�
(i)

k(i)
2 �k(i) and �

�
k�2 �k� . Whereas this measure is nat-

ural in �xed dimension problems, it must be built when
model choice has to be performed. Green has provided
a very general and exible way for de�ning such a mea-
sure. First, complete the two subspaces with random vari-

ables c1,c2 such that dim (c1) + dim
�
�
(i)

k(i)

�
= dim(��k�) +

dim (c2) and then de�ne a reversible transformation

gk(i);k� (�) between the completed subspaces�k(i) and�k� ,

such that (��k� ; c2) = gk(i);k�
�
c1; �

(i)

k(i)

�
. The correspond-

ing expression of the symmetric measure is given in [6],

and allows to obtain densities of �
�
d�

(i)

k(i)

�
q
�
�
(i)

k(i)
; d��k�

�
and � (d��k�) q

�
�
�
k� ; �

(i)

k(i)

�
according to the same domi-

nating measure [6]. Denoting ja;b the proposition of a
move from �a to �b, the acceptance ratio then writes

�k(i);k� = min

(
1;

�(��k�)q2(c2)j;k�;k(i)

�

�
d�

(i)

k(i)

�
q1(c1)j

k(i);k�

Jg
k(i);k�

)
where

Jg
k(i);k�

is the Jacobian of the transformation. Note that

these reversible jumps are automatically de�ned by pair.
A MH-Green update (and similarly its reverse movement)
thus boils down to:

1. Choose movement from �k(i) to �k� with probability
jk(i);k� .

2. Draw c1 � q1 (�).

3. Evaluate (��k� ; c2) = gk(i);k�
�
c1; �

(i)

k(i)

�
and �k(i);k� .

4. Set �
(i+1)

k(i+1) = �
�
k� with probability �k(i);k� else �

(i+1)

k(i+1) =

�
(i)

k(i)
:

4. ALGORITHM

We �rst present the general scheme of the algorithm:

1. Initialization of �
(0)

k(0)
and i = 0.

2. Iteration i

3. Update, for k(i) given, the parameters a
(i)
k ;!

(i)
k and �2(i).

4. Choose randomly between the following dimension
changes:

(a) \birth": add a sinusoid, at random.

(b) \death": remove a sinusoid at random.

(c) \split" randomly a sinusoid into two close sinusoids.

(d) \merge" two close sinusoids.

5. i i+ 1 and Go to 2.

Step 3 is classical, and can be found in [1] for example.
We now focus on the details of the birth-death and split-
merge movements. Here the 4 movements are proposed with
probabilities bk = sk, dk = mk such as the de�nitions of bk
and dk in [6].
The birth-death move is simple. The augmented

states are (a) �k+1 =
�
ak+1;!k+1; �

2; c1 = (l�; a�k)
�
2

�k+1 where l� is the label of the victim and l� �
U1;:::;k+1 (�), a�k � p

�
a�kj!k+18l� ; �

2;y
�

(it is a nor-

mal distribution, see [1] for its expression). (b) �k =�
ak;!k; �

2; c2 = (!�; a�k+1)
�
2 �k and !� � U[0;�] (�),

a�k+1 � p
�
a�k+1j!k; !

�; �2;y
�
. The reversible transforma-

tion is here the identity.
The split-merge move is designed to solve over-

lapping problems. The augmented states are (a)

�k+1 =
�
ak+1;!k+1; �

2; c1 = l�1
�
2 �k+1 where

(l�1 ; l
�
2 = l�1 + 1) are the labels of the candidate sinusoids

for the merge move, with l�1 � U1;:::;k (�) (b) �k =�
ak;!k; �

2; c2 = (l0�; u0; u1; u2)
�
2 �k with u0 � U(0;�) (�),

u1 � N
�
0; 2��

2

N

�
, u2 � N

�
0; 2��

2

N

�
, l0� � U1;:::;k (�). We

note Ei , a2ci + a2si . The split-merge reversible function is
de�ned here by (here for the split):

acl�
1

= u1 and acl�
2
= ac

l0�
� u1 (3)

asl�1
= u2 and asl�2

= asl0� � u2 (4)

!l�1
=

�
!l0� � u0�

�
q

El�2

�
El�1

�
I(0;�) (5)

!l�2
=

�
!l0� + u0�

�
q

El�1

�
El�2

�
I(0;�) (6)

where �� (1= (10N) in our simulations) is a given parameter
of the algorithm, which has no inuence on the statistical
model. The reverse move is automatically de�ned and one
can easily check that the following equations are compatible
with Eq. (3)-(6):

!l0� =
�
El�1

!l�1
+El�2

!l�2

�� �
El�1

+El�2

�
(7)

acl0� = acl�1
+ cl�2 and asl0� = asl�1

+ asl�2
(8)

We do not detail here the easy proof which ensures conver-
gence of the algorithm and focus on simulation results.

5. SIMULATIONS

In practice, as outlined in Sect. 2, it is necessary to give
� and � values. In fact, only order of magnitudes for �2

and � are necessary. A solution to obtain those values is to
consider �2 and � as parameters which are to be estimated.
The Bayesian model is thus modi�ed and one wants to es-
timate the following a posteriori probability distribution:

p
�
�2;�; �k; k

��y� / p
�
yj �2;�; �k; k

�
�

�p (�k; k) p
�
�2
�
p (�) (9)



One gives �2 a di�use a

priori �2 � IG (�; �)
�
� = 2; � = yyy

�
. �2 can be eas-

ily updated as it is a conjugate prior [3]. For � the same
method is applied and we assume a quasi non-informative
prior [3] � � IG (1/ 2 + "1; "2) ("i � 1 i = 1; 2). In prac-
tice one easily obtains estimates of p

�
�2
��y� and p (�jy),

and thus approximate values for �2 and �. It is then su�-
cient to apply the algorithm presented in Sect. 4 with �xed
values �20 and �0 (e.g. the means), to estimate (2).
We present the two following experiments, similar to

those found in [5]. The �rst one has the following parame-
ters: N = 64; k = 3 and the sinusoids are described in Tab.
1
With SNR = 10 log10 E1/

�
2�2

�
as a de�nition, we

have applied the algorithm to the three following situations
SNR1a = 3db, SNR1b = 0db and SNR1c = �3db. We
present the a posteriori probability distributions of the dif-
ferent hyperparameters in the di�erent cases. We present
estimations for p

�
�2
��y� and p (�jy) only for SNR1b. One

notes that as the SNR gets weaker the energy is attributed
to the wrong sinusoid. The second experiment has the fol-
lowing parameters: N = 64; k = 2 and the sinusoids are
described in Tab. 2
With the de�nition given above, we performed the experi-

ment for the following parameters, SNR2 = 3db is constant,
and l = 1; 4; 6; 8. Due to lack of space, we do not present
the Bayes factors [3], see [1].
Note the richness of the results, which could not be ob-

tained from classical methods.

6. CONCLUSION

In this contribution, we have provided a Bayesian solution
to the problem of joint detection and estimation of sinusoids
embedded in noise. As closed-form expression for the pos-
terior distribution is not possible, we propose a stochastic
algorithm based on MCMC (Markov chain Monte Carlo)
which allows to cleverly explore this posterior distribution.
More precisely we use reversible jump MCMC introduced
by [6] which allow spaces of di�erent dimension to commu-
nicate and share redundant information. Results are very
satisfactory, and the output of the algorithm provides a lot
of information which can not be obtained from classical so-
lutions. Furthermore, we show how it is possible to estimate
satisfactory values for the hyperparameters, circumventing
arbitrariness.
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i Ei � arctan (asi/ aci) !i/ 2�
1 20 0 0:2
2 6:3246 �/ 4 0:2 + 1/N
3 20 �/ 3 0:2 + 2/N

Table 1. Parameters of the �rst experiment

i Ei � arctan (asi/ aci) !i/ 2�
1 20 0 0:2
2 20 �/ 4 0:2 + 1/ (lN)

Table 2. Parameters of the second experiment
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Figure 1. bp (kjy) for 4 SNR
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Figure 2. bp ( !i/ 2�jy; k = 3) for i = 1; 2; 3 and SNR1a
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Figure 3. bp (Eijy; k = 3) for i = 1; 2; 3 and SNR1a
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Figure 6. bp (Eijy; k = 3) for i = 1; 2; 3 and SNR1b
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Figure 7. bp (EijE2 < 10; k = 3) for i = 1; 3 and SNR1b

0.18
0.19

0.2
0.21

0.22
0.23

0.24

0

0.05

0.1

0.15

0.2

Figure 8. bp ( !i/ 2�jy; k = 3) for i = 1; 2; 3 and SNR1c
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Figure 9. bp (Eijy; k = 3) for i = 1; 2; 3 and SNR1c
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Figure 10. bp (kjy) for l = 1; 4; 6; 8 and SNR2
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