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ABSTRACT

A direct method for superresolution recently proposed by
Walsh and Delaney is further analyzed from the point of
view of numerical stability. The method is based on a set
of linear equationsAx = b, whereA is m � n, and b
is a subset (of cardinaln) of the Fourier transform of the
object (which has a total ofN samples). We give exact
and best possible approximate expressions for the deter-
minant ofA, whenm = n. As a corollary, it is shown
that the smallest eigenvalue ofA in absolute value satis-
fies j�minj � k(n)N�(n�1)=2, wherek(n) (which is inde-
pendent ofN ) is explicitly given. The magnitude of the
smallest eigenvalue ofA becomes increasingly small asN
grows, even when the number of unknownsn remains con-
stant. Whenm > n the singular values ofA are studied, and
related to the eigenvalues of the matrix of two other direct
methods. As a result, the connection between the method
and the other direct methods is clarified.

1. INTRODUCTION

It is quite well-known that the resolution of a time-domain
or space-domain object can be improved by restoring lost
frequency-domain information, a process that is known as
superresolution.

The theory and algorithms that relate to this problem
use the available information concerning the object in both
the space-domain and the Fourier domain. As an example,
the object, mathematically modeled by a functionx, might
be finite, and its extent is usually known. For example, the
support of the functionx might be a certain given compact
set. On the other hand, its Fourier transformx̂ might be
partially known (in the sense thatx̂(!) is known for some
values of!). Under these two hypotheses, it is theoretically
possible to estimate the object given the available informa-
tion only (in other words, it is possible to extrapolate the
Fourier transform of the object).
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The existence and uniqueness of the solution to this su-
perresolution / extrapolation problem is a straightforward
consequence of the analyticity of the Fourier transform of
a compactly supported object. However, analytic continua-
tion does not seem to lead to any practical superresolution
algorithms, and other solutions are needed.

One of the first methods proposed uses the double or-
thogonality of the prolate spheroidal functions [15]. Most
other methods take advantage of the following facts: math-
ematically, the set of signals that satisfy the time or space
domain conditions mentioned above (compact, known sup-
port) is a subspace of some parent Hilbert spaceH (often
L2). Similarly, the set of signals that satisfy the frequency-
domain conditions defines another subspace ofH. Suc-
cessive projections onto each of these subspaces lead to a
sequence of approximations to the solution of the problem
[8,13,19]. A more general alternative is the POCS (projec-
tions onto convex sets) method [14,20].

Numerical algorithms require discrete-time or discrete-
space formulations, that is, sampled data. The finite dimen-
sional equivalent of the alternating projection or Gerchberg-
Papoulis iteration was studied by Jones [11]. A more recent
work [2] has pointed out several properties of some of the
iterative methods in connection with the interpolation prob-
lem.

A number of noniterative methods have also been pro-
posed. The one-step method introduced by Cadzow [1] is an
example. The noniterative methods proposed by Gr¨ochenig
[10] and Ferreira [3], which at first glance appear to be
based on rather distinct ideas, are in fact dual [5] in a certain
sense. Recently, other methods have appeared [9,12].

These works deal mostly with the signal extrapolation or
interpolation problems. Specific results, in the light of [3],
for the image reconstruction problem can be found in a va-
riety of related works [4,7]. Strohmer [16,17] has proposed
efficient numerical algorithms (based on the preconditioned
conjugate gradient method) to solve the signal and image
extrapolation problem, starting from one of the direct meth-
ods [10].



Walsh and Delaney [18] have also given a direct (non-
iterative) solution to the discrete superresolution problem,
which is based on a set of linear equationsAx = b. It is the
purpose of this paper to study the stability of their method
and to relate it to the noniterative solutions described in
some of the works mentioned above. More precisely, we
give exact and best-possible bounds for the determinant of
A, whenA is square. As a corollary we then show that
A has, in general, very small eigenvalues whose magnitude
depend on the total number of samples of the data record
N , and not only on the number of unknown samples. When
the matrix is not square we show that its singular values are
related to the eigenvalues of the direct methods proposed
in [3,10,17].

2. THE METHOD

Let x 2 C
N denote a signal, and̂x 2 C

N its Fourier trans-
form, defined bŷx = Fx, whereF is theN � N Fourier
matrix with elements

Fab =
1p
N
e�j 2�

N
ab:

In the discrete superresolution problem [18] the signalx 2
CN (with a total ofN samplesx0; x1; : : : ; xN�1) is known
to vanish except forn contiguous samples. Without loss of
generality, the nonzero samples can be labeled

x0; x1; : : : ; xn�1

Additionally,m samples of the discrete Fourier transformx̂
are known. The Fourier transform of a real signalx 2 RN

satisfiesx̂i = x̂�N�i, and so one may assume without loss
of generality that the known samples are

x̂0; x̂1; x̂2; : : : ; x̂k; x̂N�k; x̂N�k+1; : : : ; x̂N�1;

with m = 2k + 1.
As in [2], we denote byEN the setf0; 1; : : : ; N � 1g,

and letSa andSb be two subsets ofEN ofM elements each.
We say thatSa andSb areequivalentif the elements ofSa
can be obtained by addition of an integer constant, modulo
N , to the elements ofSb. This means thatSa andSb are
related by a circular shift (a cyclic permutation). We say
that a subset ofEN of cardinalityM < N is contiguousif
it is equivalent toEM = f0; 1; : : : ;M � 1g.

It is clear that the indexes of the known Fourier trans-
form samples in the superresolution problem, that is,

f0;�1;�2; : : : ; kg mod N;

are contiguous.
Mathematically, the discrete version of the superreso-

lution problem is therefore a special case of the following
problem: [5]

Problem 1 LetSt andSf be two proper nonempty subsets
of f0; 1; : : : ; N � 1g. Given the setsx(St) := fxi : i 2 Stg
andx̂(Sf ) := fx̂i : i 2 Sfg, findx andx̂.

We will assume thatSt andSf haveN�n andm elements,
respectively. In the superresolution problem the setSt is of
the form

St = fn; n+ 1; n+ 2; : : : ; N � 1g;
andxi = 0 for all i 2 St. On the other hand, the setSf can
often be described as

Sf = f0; 1; 2; : : : ; kg[fN�k;N�k+1; : : : ; N�1g; (1)

wherem = 2k + 1. Generally speaking, one might have
Sf = fi0; i1; : : : ; im�1g, a set of integers distinct modulo
N . We will use this notation even when the elements ofSf
are contiguous moduloN , as in (1).

The solution proposed by Walsh and Delaney [18] is as
follows. Consider theN equationŝx = Fx, concentrating
on them equations that correspond to known frequency-
domain sampleŝxi, that is,

x̂i =

n�1X
j=0

Fijxj ; (i 2 Sf ): (2)

Note that�St = f0; 1; : : : ; n � 1g andx(St) = 0. We will
use the notationAx = b, whereAjk = Fijk, bj = x̂ij .

If m � n one might hope to solve them for then un-
knownxj , 0 � j < n. When the elements ofSf andSt are
not contiguous moduloN , this necessary condition is not
sufficient (it is easy to exhibit examples of setsSt andSf
such that the matrixA has no inverse). But when eitherSf
or St are contiguous moduloN the matrixA will be Van-
dermonde, up to a scale factor, and consequently nonsingu-
lar. It is a bit less straightforward to show that contiguity is
merely a sufficient condition for non-singularity.

3. NUMERICAL STABILITY

It is convenient to use the notationSf = fi0; i1; : : : ; im�1g
despite the fact that we are considering a setSf given by
(1). Assume thatm = n. Then, as we have remarked, the
matrix in (2) is square and proportional to a Vandermonde
matrix,

x̂ik =
1p
N

n�1X
j=0

wikjxj ; (k = 0; 1; : : : ;m� 1):

We have writtenw = e�j 2�
N . The determinant� of the

matrixA of this set of equations is given by

� =
1

Nn=2

Y
j>k

(wij � wik )



and consequently

j�j = 1

Nn=2

Y
j>k

jwij � wik j:

We will attempt to express the absolute value of this deter-
minant in a more convenient form. Our task is slightly more
simple if we note that the absolute value of the determinant
is independent of a shift moduloN in the setSf . Conse-
quently, we are free to assume without loss of generality
thatik = k.

The next step is to observe that the possible distances
jwij�wik j obtained asj andk range over all possible values
(j > k) are

j1� w1j; j1� w2j; j1� w3j; : : : ; j1� wn�1j
each distance being attainedn � 1; n � 2; : : : ; 1 times, re-
spectively. Therefore

Nn=2j�j =
n�1Y
i=1

j1� wijn�i;

or, recalling thatw = e�j 2�
N ,

Nn=2j�j =
n�1Y
i=1

����2 sin
�
�i

N

�����
n�i

: (3)

If �i=N is small, the following approximation is valid:

Nn=2j�j �
n�1Y
i=1

�
2�i

N

�n�i
:

The closed form expression (3) is a convenient representa-
tion of the determinant, but we need to go one step further
in order to estimate how small can the eigenvalues ofA be.

To probe further on the structure of (3) we need to ex-
pand the terms of the formsin(ix), with x = �=N , in terms
of sinx andcosx. This can be done as follows. First, set-
ting x = �=N , note that

Nn=2j�j = 2n(n�1)=2
n�1Y
k=1

j sin(kx)jn�k :

On the other hand,

n�1Y
k=1

sinn�k(kx) =

n�1Y
k=1

�
sin(kx)

sin(x)

�n�k
sinn�k(x)

=

n�1Y
k=1

Un�k
k�1 (cosx) sin

n�k(x);

whereUk(x) denotes the Chebyshev polynomial of the sec-
ond kind and degreek, normalized so thatUk�1(1) = k.

Proceeding,

n�1Y
k=1

sinn�k(kx) = (sinx)n(n�1)=2
n�1Y
k=1

Un�k
k�1 (cosx);

and so

n�1Y
k=1

sinn�k(kx) = (sinx)n(n�1)=2Pm(cosx)

wherePm is a certain polynomial of degree

m =
n�2X
i=1

i(n� i� 1) =
n(n� 1)(n� 2)

6
:

The bound

Nn=2j�j � 2n(n�1)=2C(n) sin
� �
N

�n(n�1)=2

where

C(n) = 1! 2! 3! 4! � � � (n� 1)!;

is therefore asymptotically correct (the cosine terms have
been neglected). A further approximation is

Nn=2j�j � 2n(n�1)=2C(n)
� �
N

�n(n�1)=2
:

Since the determinant� is the product of the eigenvalues�,
one has

j�minjn � j�j � j�maxjn

where�min and�max denote the smallest and largest eigen-
values in absolute value. This shows that the minimum
eigenvalue of the matrix satisfies

j�minj � j�j1=n � C(n)1=np
N

h
2 sin

� �
N

�i(n�1)=2
:

Note that�min decreases asN increases, even if the total
number of unknown samplesn remains constant. It is possi-
ble to estimateC(n) using the Euler-MacLaurin summation
formula. This leads to

C(n)1=n � exp(
n

2
log(n)� 3n

4
+ 1):

Usually,n is much smaller thanN , and thesin can be re-
placed by its argument. It follows that�min is bounded by a
quantity which isO(

p
ne�3n=4) timesO[(�

p
n=N)n]. The

matrixA has, in general, very small eigenvalues and may
become singular to machine precision even for moderate
values ofn andN (say,n = 10 andN = 100).



4. OTHER METHODS

The matricesAAH or AHA have the same (real) nonzero
eigenvalues, and it is well known that they are the squares
of the nonzero singular values ofA. It is clear that

(AAH )ab =

n�1X
j=0

FiajF
�

jib
=

1

N

n�1X
j=0

w(ia�ib)j ;

and

(AHA)ab =

n�1X
j=0

FaijF
�

ijb =
1

N

n�1X
j=0

wij (a�b):

But these equations are similar to those that define the ma-
trices of the direct methods studied in [3,10,17]. Therefore,
the singular values ofA are the square roots of the eigenval-
ues ofAAH orAHA. These eigenvalues have been studied
(a recent reference is [6]), and the results can immediately
be applied toA as well.
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