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ABSTRACT The existence and uniqueness of the solution to this su-
perresolution / extrapolation problem is a straightforward
consequence of the analyticity of the Fourier transform of
a compactly supported object. However, analytic continua-
tion does not seem to lead to any practical superresolution
algorithms, and other solutions are needed.

One of the first methods proposed uses the double or-
thogonality of the prolate spheroidal functions [15]. Most

A direct method for superresolution recently proposed by
Walsh and Delaney is further analyzed from the point of
view of numerical stability. The method is based on a set
of linear equationsdz = b, where A is m x n, andb

is a subset (of cardinal) of the Fourier transform of the
object (which has a total oV samples). We give exact

and best possible approximate expressions for the deter X
minant of A, whenm — n. As a corollary, it is shown other methods take advantage of the following facts: math-

that the smallest eigenvalue df in absolute value satis- ematigally, th.e. set of signals that satisfy the time or space
fies | Amin| < k(n)N—(=1/2 wherek(n) (which is inde- domsqn conditions mentioned above (c_ompact, known sup-
port) is a subspace of some parent Hilbert spHcéoften
L»). Similarly, the set of signals that satisfy the frequency-
domain conditions defines another subspacé{of Suc-
cessive projections onto each of these subspaces lead to a
sequence of approximations to the solution of the problem
O[8, 13,19]. A more general alternative is the POCS (projec-
tions onto convex sets) method [14, 20].

Numerical algorithms require discrete-time or discrete-
space formulations, that is, sampled data. The finite dimen-
1. INTRODUCTION sional equivalent of the alternating projection or Gerchberg-
) ] ) ] _ Papoulis iteration was studied by Jones [11]. A more recent
It is quite well-known that the resolution of a time-domain 5k [2] has pointed out several properties of some of the

or space-domain object can be improved by restoring 10tjierative methods in connection with the interpolation prob-
frequency-domain information, a process that is known asgn,.

superresolution

The theory and algorithms that relate to this problem
use the available information concerning the object in both
the space-domain and the Fourier domain. As an example
the object, mathematically modeled by a functigrmight
be finite, and its extent is usually known. For example, the
support of the function: might be a certain given compact
set. On the other hand, its Fourier transfatnmight be
partially known (in the sense tha{w) is known for some
values ofv). Under these two hypotheses, it is theoretically
possible to estimate the object given the available informa-
tion only (in other words, it is possible to extrapolate the
Fourier transform of the object).

pendent ofN) is explicitly given. The magnitude of the
smallest eigenvalue of becomes increasingly small a5
grows, even when the number of unknowngemains con-
stant. Whemn > n the singular values ol are studied, and
related to the eigenvalues of the matrix of two other direct
methods. As a result, the connection between the metho
and the other direct methods is clarified.

A number of noniterative methods have also been pro-
posed. The one-step method introduced by Cadzow [1] is an
example. The noniterative methods proposed bycBenig
[10] and Ferreira [3], which at first glance appear to be
based on rather distinct ideas, are in fact dual [5] in a certain
sense. Recently, other methods have appeared [9,12].

These works deal mostly with the signal extrapolation or
interpolation problems. Specific results, in the light of [3],
for the image reconstruction problem can be found in a va-
riety of related works [4, 7]. Strohmer [16,17] has proposed
efficient numerical algorithms (based on the preconditioned
conjugate gradient method) to solve the signal and image
extrapolation problem, starting from one of the direct meth-
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Walsh and Delaney [18] have also given a direct (non-
iterative) solution to the discrete superresolution problem,
which is based on a set of linear equatiohis = b. Itis the
purpose of this paper to study the stability of their method
and to relate it to the noniterative solutions described in

Problem 1 LetS; and.Sy be two proper nonempty subsets
of {0,1,..., N — 1}. Given the sets(S;) := {z; : i € S;}
andz(Sy) := {#; : i € Sy}, findz andz.

We will assume tha$; andS; haveN —n andm elements,
respectively. In the superresolution problem theSds of

some of the works mentioned above. More precisely, we

give exact and best-possible bounds for the determinant ofthe form
A, when A is square. As a corollary we then show that 1},
A has, in general, very small eigenvalues whose magnitude

depend on the total number of samples of the data recordandz; = 0 for all 7 € S;. On the other hand, the s8f can
N, and not only on the number of unknown samples. When often be described as

the matrix is not square we show that its singular values are

related to the eigenvalues of the direct methods proposed Sp=40,1,2,...,k}U{N -k, N=k+1,...,N=1}, (1)
in [3,10,17].

Si={n,n+1,n+2,...,N —

wherem = 2k + 1. Generally speaking, one might have
Sy = {io,i1,...,im—1}, a set of integers distinct modulo
N. We will use this notation even when the elements pf
are contiguous modul®y, as in (1).

The solution proposed by Walsh and Delaney [18] is as
follows. Consider théV equations: = F'z, concentrating
on them equations that correspond to known frequency-
domain samples;, that is,

2. THE METHOD

Letz € CN denote a signal, antl € CV its Fourier trans-
form, defined by = F'z, whereF is the N x N Fourier
matrix with elements
1 27
F, = ——eixab,
b \/N

In the discrete superresolution problem [18] the sigha
CN (with a total of N sampleszg, 21, ..., zy—1) is known
to vanish except fon contiguous samples. Without loss of  Ngte thatS, = {0,1,...,n — 1} andz(S;) = 0. We will
generality, the nonzero samples can be labeled use the notationlz = b, whereA;, = F j, b; = &,

If m > n one might hope to solve them for theun-
knownz;, 0 < j < n. When the elements &fy andS; are
Additionally, m samples of the discrete Fourier transfakm ot contiguous moduldV, this necessary condition is not

are known. The Fourier transform of a real signat RY ~ sufficient (it is easy to exhibit examples of sétsand Sy
satisfiesi; = #%_;, and so one may assume without loss such that the matrid has no inverse). But when eith&y

of genera"ty that the known Samp'es are or St are COI’ltigUOUS moduld&’ the matrixA will be Van-
dermonde, up to a scale factor, and consequently nonsingu-

n—1
T; = Z Fijxj, (Z € Sf) (2)
=0

Lo, T1y---5,Tn-1

B0, 81, B2y ey By EN ks EN— k15 -+ EN—1, lar. It is a bit less straightforward to show that contiguity is
) merely a sufficient condition for non-singularity.
with m = 2k + 1.
As in [2], we denote byEy the set{0,1,..., N — 1},

and letS, andS;, be two subsets dfy of M elements each. 3. NUMERICAL STABILITY

We say thatS, and S, areequivalentf the elements of5,

can be obtained by addition of an integer constant, modulo
N, to the elements of,. This means tha$§, and.S, are
related by a circular shift (a cyclic permutation). We say
that a subset of/y of cardinalityM < N is contiguousf

Itis convenientto use the notatidh = {ip,i1,...,9m—1}
despite the fact that we are considering a.Sgigiven by
(1). Assume thatn = n. Then, as we have remarked, the
matrix in (2) is square and proportional to a Vandermonde

- . matrix,
it is equivalenttoFy, = {0,1,...,M —1}.
It is clear that the indexes of the known Fourier trans- 1 =t
form samples in the superresolution problem, that is, &y, = TN Z w*z;, (k=0,1,...,m—1).
j=0

{0,4£1,+2,...,k} mod N, ,
We have writtenw = e 1%. The determinani\ of the
matrix A of this set of equations is given by

A= g [L0# — )
i>k

are contiguous.

Mathematically, the discrete version of the superreso-
lution problem is therefore a special case of the following
problem: [5]



and consequently Proceeding,

1 ) )
Al = ] [ it n—1 n—1
Al Nn/2 i [w w*| | | sin™ F (kx) = (sinar:)"““lV2 | | U,?:lk(cosx),
k=1 k=1

We will attempt to express the absolute value of this deter-
minant in a more convenient form. Our task is slightly more @nd so
simple if we note that the absolute value of the determinant

is independent of a shift modully' in the setS;. Conse- H sin"*(kz) = (sinz)" ™ V/2 P, (cos 7)
guently, we are free to assume without loss of generality bt
thatik = k.

The next step is to observe that the possible distancesvhereP,, is a certain polynomial of degree
|wi —w' | obtained ag andk range over all possible values

(j > k) are n—2 —1)(n—2
m = i(n—i—l):%.
1 —w'|,]1—w?|,|1—-w?,...,|1 —w"! i=1
each distance being attained- 1,n — 2,...,1 times, re- The bound

spectively. Therefore (n—1)/2
n/2 n(n—1)/2 T\
N™2|A| < 2 C(n) sm(N)

n—1
N2l =TT - i,
i=1

where
. 2 C(n)=11213141 ... (n — 1),
or, recalling thaty = e 3%, (n) (n—1)
et i is therefore asymptotically correct (the cosine terms have
Nn/2|A| _ H 25111(%)‘ _ 3) been neglected). A further approximation is
i=1
n(n—1)/2
n/2 o on(n—1)/2 K
If 7¢/N is small, the following approximation is valid: N™EIA| 2 ¢n) (N) ’
ol rg i\ i Since the determinand is the product of the eigenvalugs
N2 AL~ ] - one has
S\ N
= |>\min|n S |A| S |>\max|n

The closed form expression (3) is a convenient representa- i

tion of the determinant, but we need to go one step further VNer€Amin andAmax denote the smallest and largest eigen-

in order to estimate how small can the eigenvalue b. values in absolute value. This shows that the minimum
To probe further on the structure of (3) we need to ex- €i9envalue of the matrix satisfies

pand the terms of the forgin(iz), with x = 7 /N, in terms

1/n —
of sin z andcos z. This can be done as follows. First, set- min] < [A]Y" < cmt/n {2 sin (l)] (=072
ting z = /N, note that B - VN N
n—1 Note that)\,;, decreases a& increases, even if the total
N"2|A| = 2n(n=1/2 H | sin(kz)|" k. number of unknown samplesremains constant. It is possi-
k=1 ble to estimat&’(n) using the Euler-MacLaurin summation
On the other hand, formula. This leads to
n—1 n-1 , . n—k I/n o ™ _3n 1
ek _ sin(kx) R C(n)/" =~ exp( log(n) +1).
kl:[l sin® %(kx) = kl:[l ( Sin(2) sin™ " (x) 2 4
a o Usually, n is much smaller tha@v, and thesin can be re-

_ H Un_k(cos 2) sin"_k(a:) placed by its argument. It follows that,;, is bounded by a

k=1 ’ quantity which isO(y/ne=3"/*) timesO[(r/n/N)"]. The
matrix A has, in general, very small eigenvalues and may
whereUy (z) denotes the Chebyshev polynomial of the sec- become singular to machine precision even for moderate
ond kind and degreg, normalized so that/;,_;(1) = k. values ofn. andN (say,n = 10 andN = 100).

k=1
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