
AN ARCHITECTURAL STUDY OF A DIGITAL SIGNAL PROCESSOR FOR
BLOCK CODES

Wolfram Drescher, Menno Mennenga, and Gerhard Fettweis

Mobile Communications Systems

Dresden University of Technology, D-01062 Dresden

email: drescher, mennenga, fettweis@ifn.et.tu-dresden.de

ABSTRACT

This paper examines architectural issues for a domain specific dig-
ital signal processor (DS-DSP) which is capable of fast decoding
of block codes. In real time systems it was not possible before to
employ common processors for this task because of a lack of
architectural and arithmetical support. We proposed solutions for
the arithmetical problem in previous work [6]. In this paper we
focus on architectures for implementation of different block
decoding algorithms on a new DS-DSP architecture. The paper
also contains benchmarks for our architecture for some selected
codes and compares our DS-DSP to common digital signal pro-
cessors (DSP) and dedicated logic solutions.1

1. INTRODUCTION

Today digital signal processors (DSP) present a key technology.
The performance of DSPs is evolving further by development of
new architectures rather than by advances in semiconductor tech-
nology. Therefore we measure a gain in performance by a reduced
MIPS requirement per algorithm. In [1] DSPs are divided into
three classes:

(1) general purpose DSP (GP-DSP)
(2) domain specific DSP (DS-DSP)
(3) application specific DSP (AS-DSP).

AS-DSPs are typically customized to a specific high-end applica-
tion and DS-DSPs are defined as targeted for a wider application
domain. Examples for the AS-DSP class can be found in [2] and
for the DS-DSP class in [3] and [4]. The work described in this
paper reflects our research from the CATS project [1], [5] of an
integrated DS-DSP design system. Target of the processor
described next is the domain of block codes, particularly binary
and non-binary BCH codes. That requires a dedicated datapath,
bus, and memory architecture.
Present software implementations of applications from mobile
communications or data storage technology do not include block
codes because of the required dedicated arithmetical units for real-
time systems. Moreover, committees setting standards for future
applications know that such codes cannot be mapped onto binary
processing architectures. Probably this is one reason why those
algorithms are not used for applications that demand high volume

1.This work was sponsored in part by the Deutsche Forschungs-
gemeinschaft (DFG) within the Sonderforschungsbereich SFB 358

production such as cellular phones. If both finite field arithmetic
and binary arithmetic were utilized for DSP technology and DSP
architecture supported the algorithmic requirements of block
codes we anticipate a breakthrough even for low budget applica-
tions. In chapter 2. we start from the arithmetic problem (data
manipulation problem) of our target coding algorithms and
develop a datapath architecture. In chapter 3. we investigate data-
flow requirements (data transport problem) and propose architec-
tures of parallel datapaths for very high throughput applications.

2. ALGORITHM AND ARCHITECTURE
SELECTION

In [6] we proposed a MAC unit for both binary and Galois arith-
metic. In this section, we discuss serial execution of a BCH decod-
ing algorithm and derive hardware modifications of such a MAC
unit for simple and fast computation of typical decoding opera-
tions.

2.1 Syndromes

Assume is the
received code word polynomial in at-error-correcting BCH code
of length . Let be the primitive element of

. Theith component of the syndrome ofr(X) is

(1)

where and . Eq.(1) can be written in the
form of Horner‘s method:

(2)

Eq.(2) shows that the calculation of the syndromes can be reduced
to multiply-add operations. However, they do not constitute MAC
operations. Straightforward implementation of eq. (2) results in a
structure shown in Fig. 1. Operand 1 (Op1) corresponds with
and Operand 2 (Op2) corresponds with . We call this unit accu-
mulate-multiply unit (ACM) because the contents of the register is
used as the input for the multiplier.
The structure of the ACM unit can be merged, on the logic level,
with a MAC by adding additional wiring and control gates that
will flexibly direct the data using an extended bus structure. This
is possible even without considerably extending die area. The rea-
son for this is that the multiplier which takes the most area is the
same for MAC and ACM. The extended MAC unit is shown in
Fig. 1 (b).

r X() r0 r1X r2X
2 … r n 1– X

n 1–
+ + + +=

n 2
m

1–= α
r i GF 2

m()∈

Si r αi() r iα
j i

j 0=

n 1–∑= =

1 i 2t≤ ≤ r i GF 2
m()∈

Si r0 αi
r1 αi

r2 αi …()+()+()+=

αi

r i

Fig. 1 ACM unit (a), and extended MACs (b), (c)

Note that this structure has the capability to perform binary MAC
operations just as today‘s fixed-point DSPs. In addition, it can be
used to calculate the syndrome of a code word using Galois arith-
metic.

2.2 Key Equation

The next step in decoding a BCH code word is to find the linear
feedback shift register of minimum lengtht that will output the
syndromes if it is initialized with the firstt syndromes. Let the reg-
ister be described by the polynomial

 with . An effective
algorithm to find is the Berlekamp-Massey Algorithm
(BMA) [9]. We will shortly discuss the arithmetical operations
that are performed during the execution of this iterative algorithm.
Then we derive the structures of the functional units that imple-
ment these operations.
At each iteration, the coefficients may be updated and the
degreet of may be incremented. Let and
be the polynomial at iteration and , respectively, where

 and is such that is maximum over all itera-
tions. The update procedure is carried out as follows. First, calcu-
late

(3)

If , calculate the scaling factor

(4)

and the coefficients of the updated error locator polynomial

(5)

where , and

If , take and .

Eq.(3) is a MAC operation, hence this part of the BMA can be
straightforwardly implemented on the functional unit shown in
Fig. 1 (b). The execution of eq. (4) requires the division of two
Galois elements. Division of two Galois field elements can be
reduced to multiplying the dividend with the inverse of the divisor.
The inverse be found using look-up tables. Eq. (5) constitutes a
simple multiply-add operation as in a MAC unit except that the
result of this one-cycle operation is not accumulated. Thus, this
operation can be performed on a MAC when three operands are
fetched during each clock cycle. The disadvantage of this imple-
mentation is that it would require more memory bandwidth than
the other operations. However, this problem can be circumvented
with the introduction of a second register (in addition to the accu-
mulator) holding the constant∆. Then, after the constant register

+

*

+

*

Op1 Op2

+

*

(a) (b) (c)

Op1 Op1Op2 Op2

σ X() σ0 σ1X … σtX
t

+ + += σi GF 2
m()∈

σ X()

σi
σ X() σ µ()

X() σ ρ()
X()

µ ρ
dρ 0≠ ρ µ< ρ t

ρ()
–

dµ Sµ 1+ σ1
µ()

Sµ σ2
µ()

Sµ 1– … σ
t

µ()
µ()

S
µ 1 t

µ()–+
+ + + +=

dµ 0≠
∆ dµ dρ⁄=

σi
µ 1+() σi

µ() σi µ ρ–()+
ρ() ∆+=

i 1 2 … t
µ 1+(), , ,= t

µ 1+()
max t

µ()
t

ρ() µ ρ–+(,)=

dµ 0= σ µ 1+()
X() σ µ()

X()= t
µ 1+()

t
µ()

=

has been initialized, only two operands need to be fetched thus
reducing memory bandwidth to two operands per clock cycle. The
functional unit that implements the necessary operations both for
the syndrome calculation and the BMA is shown in Fig. 1 (c).

2.3 Error Locations and Error Values

The last step of the decoding algorithm is to find the error location
numbers. This involves finding the location of the errors, and find-
ing the values of the errors at these locations.
A procedure to detect the erroneous locations in a code word was
found by Chien [10]. If

(6)

then was received in error. Thus, the Chien search is per-
formed by substituting into and checking
if the result is zero. By applying the same approach as in section
2.1, we find

(7)

Eq. (7) shows that the Chien search requires ACM operations.
Thus it can be performed with our proposed functional unit, since
it already compromises ACM functionality.
After the error locations have been identified, for non-binary BCH
codes, such as Reed-Solomon codes, the error values need to be
found. This requires both MAC operations and divisions as well as
application of Horner‘s method [9]. Since our extended MAC unit
supports all these operations we do not discuss this further.

3. PARALLELISATION EMPLOYING
MULTIPLE DATAPATH UNITS

To process the enormous amount of data in future real-time appli-
cations on one processor we need to distribute arithmetic opera-
tions to parallel units on the DS-DSP datapath. Many
opportunities for parallelization at the algorithmic level exist. We
can process a number of code words in parallel in different execu-
tion units or we can distribute parts of the entire algorithm to dif-
ferent units as it is possible for the syndromes of one code word.
We do not execute loop operations of one closed set of data
employing different execution units to keep the processors bus
architecture simple.

Fig. 2 Data distribution parallelization

The algorithm parallelization requires a parallel data distribution
over multiple datapaths under the constraint of a low memory
bandwidth. One method to achieve this is to introduce a „Zurich
Zip“ register to delay input data of one unit for one cycle after dis-
tributing same data to another datapath unit. In [5] an architecture
for a GSM full-rate speech codec with multiple datapaths and an

σ αl() 0=

r n l–
1 α α2 … αn, , , , σ X()

σ αl() σ0 αl σ1 αl σ2 αl …()+()+()+=

D
AT

A
PA

T
H

 0

D
AT

A
PA

T
H

 1

D
AT

A
PA

T
H

 N

MEMORY „Zurich Zip“

D
AT

A
PA

T
H

 0

D
AT

A
PA

T
H

 1

D
AT

A
PA

T
H

 N

MEMORY circular buffer

extremely low memory bandwidth based on multiple „Zurich-
Zip“ registers was introduced. In highly parallel systems this
approach needs some cycles to fill and to clean the „Zurich Zip“
pipeline. However, for short loops as we have in key equation and
error location algorithms this is a disadvantage. For this reason we
prefer to distribute parallel data by a dedicated register file or cir-
cular buffer. Each register can be loaded in advance with coeffi-
cients that are repeatedly needed in the loops. Fig. 2 depicts the
two parallelization methods

3.1 Syndromes

Parallelization of syndrome calculation is a key issue because it
consumes the most cycles among the three decoding steps. Work-
ing on one code word we can calculate all syndromes on 2t
datapaths in parallel. This has the disadvantage to require an n-

symbols deep circular buffer for each datapath containing allα ji

and all dedicatedri from eq.(1).

A much smaller memory bandwidth can be achieved by calculat-

ing all α ji in one unit (MAC1) and accumulating in a

second corresponding unit (MAC0) as shown in Fig. 3. Accumu-

lator is initialized withα j.
For binary BCH codes MAC 0 can be reduced to an AND/XOR
logical block and can even be appended to MAC 1. Then only one
MAC-unit is needed for each syndrome having a memory band-
width of one bit/cycle.

Fig. 3 Syndrome parallelization for non-binary BCH codes

Another opportunity is to work on syndromek of c consecutive
code words in parallel.
.

(8)

This approach leads to a low memory bandwidth. We only need
one circular buffer for the parallel processedα jk. In case binary
BCH codes are decoded we work on symbolsri,k ∈ {0,1} from
GF2 andα jk from GF(2m). Then (1) can be written in a logical
form:

(9)

Based on (8),(9) we designed a special 16-bit MAC unit where we
integrated a syndrome accelerator employing same cells and same
cell interconnections as the binary/Galois MAC uses. Two code
symbolsrc,i of c code words can be processed in parallel. The par-
tial product compression scheme of the multiplier unit was parti-
tioned such that it would fit to two 8-bit Galois multipliers and to

r iα
j i

i∑

MULTIPLIER

ADDER

M
A

C
 1

MULTIPLIER

ADDER

M
A

C
 0

α j,0
ri

ACC1ACC0

S1,k = r1,k,0(α1)1 + r1,k,1(α2)1 + ... + r1,k,n-1(αn-1)1

S2,k = r2,k,0(α1)1 + r2,k,1(α2)1 + ... + r2,k,n-1(αn-1)1

• • •
Sc,k = rc,k,0(α1)1 + rc,k,1(α2)1 + ... + rc,k,n-1(αn-1)1

Si = r(αi) = XORn-1 (ri ANDα ji)
j=0

the syndrome accelerators AND-part. The shifter that is used for
number format switching in a binary MAC was extended by the
distribution scheme for the intermediate resultsri· α ji . The one‘s
complement part in binary number mode used to subtract from the
accumulator performs the addition of ri· α ji + ri+1· α j(i+1) . The
final adder stage works as a Galois-adder. For binary numbers the
accumulator-register can hold 32-bit values. We use this accumu-
lator to store four 8-bit syndromes.
The hardware overhead to a common MAC unit is a few multi-
plexer which serve to distribute the data through the shifter unit to
the dedicated part of the accumulator. Fig. 4 depicts a block dia-
gram of the proposed unit and marks the corresponding structural
parts of the binary MAC unit

Fig. 4 Binary BCH syndrome accelerator

3.2 Key Equation

Historically, for dedicated logic implementations the BMA-algo-
rithm was used because its recursive nature can be implemented in
a strait forward manner. Unfortunately neither the BMA cannot be
applied to parallel code words nor to parallel processed algorithm
parts. In other words, to solve the key equation by BMA we only
can involve one MAC even though we had more than one avail-
able. Employing the Euclidean algorithm [8] we achieve better
results. This recursive algorithm of infinite length mainly per-
forms polynomial division of two polynomials with coefficients
from a Galois field. The initial polynomial is the „syndrome poly-
nomial“ where each syndrome is one of the 2t coefficients. In a
multiple MAC architecture as one coefficient of the „syndrome
polynomial“can be hold in each MAC, i.e the Euclidean algorithm
is best applied having 2t m-bit-MAC units (2m-1 is the size of the
target Galois field). If a separate Galois field inversion unit as pro-
posed in [7] is implemented in addition an even better cycle count
can be achieved.

3.3 Error Locations and Error Values

Error locations can be found in parallel by assigningN MACs toN
code word symbols and performing the Chien search loop over
max. t coefficients ofσ(x). A register file holds all tα-powers.
Error values for binary BCH codes are obtained by checking the
zero flag after the Chien search procedure. This can be supported
by a hardware mechanism that checks all parallel MAC zero flags
and performs a XOR operation with the corresponding part of the
code word at the position where the z-flag is not set. However, for
non-binary codes the algorithms are more complicated but they

AND AND
rc, i, k
rc+1, i, k
rc+2, i, k
rc+3, i, k

rc, i+1, k
rc+1, i+1, k
rc+2, i+1, k
rc+3, i+1, k

α j (i+1)α j i

XORXOR XORXOR

40-b ACCU

XORXOR XORXOR

MULTIPLIER

SHIFT

FINAL ADDER

ONE‘S COMPLEMENT

ACCUMULATOR

can be parallelized as well by assigning one code word symbol to
one MAC.

4. BENCHMARKS

Even though benchmarks are argumentative instruments because
they may be corrupt we use them to compare our architecture to
existing target architectures. In Fig. 5 we presume equal assump-
tions, i.e. the cycle count was calculated employing the best fitting
algorithmic and arithmetic approach for each target hardware
architecture. We assumed:

• the maximum number of correctable errors in the received
code word

• received code vector consists of „high“-bits only (important
for binary BCH syndrome calculation)

• finite field multiplication on binary architectures is led back
to AND-XOR-SHIFT operations

• finite field inversion was done by table lookup
• a-powers were precalculated and stored in memory
• 16-MAC architecture had special hardware support for binary

BCH code syndrome calculation (4 input bit executed in 1
MAC/cycle)

• up to 4 code words can be processed in parallel.

Fig. 5 Benchmarks/cycle counts for RS(255,223) and
BCH(255,123) codes

Fig. 6 Speed - cost product of different RS(255,223)
decoder implementations, CAS 5203 and LSI L 647xx are

commercial custom-built RS-decoder products

TI TMS 320C5xx
TI TMS 320C6xx

Our DSP - 1 MAC
Our DSP - 16 MAC

BCH(255,139,15)
RS(255,223)54425129905

14728
72132

8414
12157

340

1360

B
C

H
 #

 o
f c

yc
le

s

R
S

 #
 o

f c
yc

le
s

10,000

1000

100

100,000

10,000

1000

Symbol Rate / Mbyte/s

1-MAC DS-DSP

C
os

t /
 $

10

100

10

1

LSI L 647xx

Pentium 233 CAS 5203

16-MAC DS-DSP

TMS320C5xx

0,1 1 100

All cycle counts reflect mainly arithmetical operations an can
increase due to memory transfer operations between the parts of
the algorithm. In Fig. 6 a speed-cost-product diagram is depicted
that assumes high volume production and estimated prices.

5. CONCLUSIONS

We have developed an architecture as well as specific datapath
components for a DS-DSP tailored to perform encoder/decoder
algorithms for block codes. Benchmarks and cost estimations
prove the competitive position of our proposed architecture. Com-
pared to a parallel architecture as TI’s TMS320C6xx our parallel
architecture employing 16 Galois-MACs is more than 50 times
faster decoding a RS(255,233) code. With such a DS-DSP it
should be possible to replace inflexible and expensive dedicated
logic components in mobile communications and data storage
devices while simultaneously having hardly any impact of existing
software libraries.

REFERENCES

[1] G. Fettweis, „DSP Cores for Mobile Communications:
Where are we going?,“ Proc. of ICASSP 1997, pp. 279-282.

[2] G. Fettweis, S. Wang, et al, „Strategies in a Cost Effective
Implementation of the PDC Half-Rate Codec for Wireless
Communications,“ IEEE 46th Veh. Tech. Conf., Atlanta,
USA, pp. 203-207, 1996.

[3] I. Verbauwhede et al, „A low-power DSP engine for wire-
less communications,“ VLSI Signal Processing IX, IEEE,
eds. W. Burleson et al, pp. 469-478, 1996.

[4] A. Abnous, J. Rabaey, „Ultra-Low Power Domain-Specific
Multimedia Processors,“ VLSI Signal Processing IX, IEEE,
eds. W. Burleson et al, pp. 459-468, 1996.

[5] M. Weiß, U. Walther, and G. Fettweis, „,A Structural
Approach for Designing Performance Enhanced Signal Pro-
cessors: A 1-MIPS GSM Fullrate Vocoder Case Study,“
Proc. of ICASSP 1997, pp. 4085-4088.

[6] W. Drescher and G. Fettweis, „VLSI Architectures for Mul-
tiplication in GF(2m) for Application Tailored Digital Sig-
nal Processors,“ VLSI Signal Processing IX, IEEE, eds. W.
Burleson et al, 1996.

[7] W. Drescher, K. Bachmann, and G. Fettweis, „VLSI Archi-
tecture for Non-sequential Inversion overGF(2m) Using the
Euclidean Algorithm,“ Proc. of ICSPAT 97, pp.631-634.

[8] A. G. Akritas, Elements of Computer Algebra, New York,
NJ: Wiley, 1989.

[9] S. Lin and D. J. Costello, Jr.,Error Control Coding: Funda-
mentals and Applications, Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[10] R. T. Chien, „Cyclic Decoding Procedure for the Bose-
Chaudhuri-Hocquenghem codes,“IEEE Transactions on
Information Theory, IT-11, pp. 549-557, Oct. 1965.

