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ABSTRACT
This work proposes a new block based motion estimation and
compensation technique applied on the detail images of the
wavelet pyramidal decomposition. The algorithm uses two
matching criteria, namely the absolute difference and the
absolute sum. For a wavelet decomposed one-dimensional step
function, it is shown that for odd translations of the step, the
absolute sum reaches a smaller minimum than the absolute
difference. We also derive in this case a constraint on the
highpass filter coefficients so that a zero prediction error can be
reached by using the absolute sum. Although this cannot be
easily generalized for an arbitrary signal profile, experimental
results obtained with photorealistic image sequences indicate that
the prediction error can be reduced with respect to techniques
that only use the absolute difference as matching criterion.

1. INTRODUCTION

In recent years, wavelets have proven to be successful in
compressing still images. Compared to the classical DCT
approach (JPEG), the wavelet based compression schemes have
the advantage of a much better image quality obtained at very
high compression ratios. Still image compression via the wavelet
transform leads to a graceful image degradation at increased
compression ratios, and does not suffer from the annoying block
artefacts, which are typical for JPEG at very low bit rates.
Another advantage of wavelets over DCT is the inherent
multiresolution nature of the transformation, so that progressive
transmission of images comes in a natural way. These advantages
can be efficiently exploited for video sequences, especially in
very low bit rate applications that can benefit from the improved
image quality. Moreover, the progressive transmission capability
is important to support variable channel bandwidths.

In this paper, we start by briefly discussing the use of wavelets in
video compression. We indicate the problems associated to using
the wavelet transform in a classical video codec as a substitute
for the DCT. We describe a video encoder that does not contain
an inverse wavelet transform. For this architecture we propose a
new block based motion estimation and compensation technique
which is able to reduce the prediction error with respect to the
classical techniques. For an original signal consisting of a simple
step function in the spatial domain, we indicate that in the
wavelet domain it is better in certain cases to sum the predicted
samples and the current samples to get the error samples, than to
subtract them.
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Figure 1. Wavelet based video encoder without inverse
discrete wavelet transform.

Although this statement cannot be easily proven for an arbitrary
signal profile, our experiments with image sequences show that a
reduction of the prediction error is feasible. Therefore, we
propose an algorithm that performs motion estimation in the
detail images of the wavelet transform, by using two matching
criteria, namely the absolute difference and the absolute sum.

The structure of this paper is as follows: in the next section we
discuss the use of the wavelet transform in a video codec. Section
3 verifies our statement for a simple 1D step function, under the
assumption of a particular type of wavelet filters. In sections 4
and 5 we respectively describe our algorithm and the results
obtained with an image sequence.

2. WAVELET BASED VIDEO CODEC

A straightforward approach to build a wavelet based video codec,
is to replace the DCT in a classical video coder by the discrete
wavelet transform [2][4]. A drawback of this implementation is
that for inter frame coding the wavelet transform is applied to the
complete error image, which contains all the block artefacts.
These artificial discontinuities, introduced in the motion field,
lead to undesirable high-frequency subband coefficients that
reduce the compression efficiency [2].

To avoid this limitation, the discrete wavelet transform is taken
out of the prediction loop which results in the video encoder
architecture [5] depicted in Fig. 1. Both motion estimation and
compensation are performed in the wavelet domain, i.e. in the
average image of the highest level and in the detail images. This
is feasible since the wavelet transformed image contains not only
frequency information but also spatial information, which is not
the case for the DCT. The advantages of such a codec are: (1) the
motion field blocking artefacts are no longer transformed to the



wavelet domain and (2) no inverse discrete wavelet transform is
needed, so that from a hardware point of view the encoder can be
simplified.

However, difficulties are encountered with this approach,
because in general the discrete wavelet transform is not shift
invariant [1], due to the subsampled nature of the transform. This
implies that shifts in the spatial domain do not just produce shifts
in the wavelet domain subimages, but change the values of the
coefficients in these subimages as well. Motion estimation and
compensation are not as simple as in the spatial domain, where
blocks are taken out of the reference image and are used to
predict the next image. In the wavelet domain the required blocks
are not directly available, therefore one cannot use the same
techniques as in the spatial domain. However, there is an
exception if the shifts in the spatial domain are multiples of the
sampling period. A dyadic wavelet transform is completely shift
invariant if the spatial domain shift has the form k⋅2J, k∈ N,
where J denotes the number of decomposition levels. In this case,
the same motion estimation and compensation approaches can be
used in the wavelet domain as in the spatial domain.

Some methods have already been introduced in [3][5]. They
perform a hierarchical motion estimation in the wavelet detail
images by using the mean absolute difference (MAE), or the
mean square difference (MSE) as matching criterion. To get the
error image, the predicted wavelet image is subtracted from the
original wavelet image (see Fig. 1), just as one would do in the
spatial domain. However, since spatial shifts produce ambiguous
effects in the wavelet image, we conclude that new methods are
required for motion estimation and compensation in the wavelet
domain.

We will show in the following sections that the prediction error
of the detail images can be reduced if one considers both
summing and subtracting the original and the predicted blocks.

3. 1D-STEP SHIFT COMPENSATION
The detail images contain high frequency information which
corresponds mainly to edges in the spatial domain. To facilitate
the calculations, we restrict the analysis to the one-dimensional
case, and we model an arbitrary edge by a step profile.
Denote by h and g the filters used to perform a one-dimensional
biorthogonal wavelet analysis of the step function ( )x n . The

lowpass filter h is symmetric around n = 0 , while the highpass
filter g is symmetric around n = −1 . Consider that ( )g n  has

2 1N +  coefficients, and introduce the notation ( ) ( )g n g n= − 1 .

The highpass component obtained from a one level wavelet
analysis of ( )x n  is given by:

( ) ( ) ( ) ( ) ( ) ( )[ ]x n g x n g p x n p x n pg
p

N
= + + + − + + +

=
∑0 2 1 2 1 2 1

1
.

Denote by ( )x n sg −  the signal obtained by shifting with s

positions the wavelet component ( )x ng , and by ( )y n  the signal

obtained by shifting with k positions the original signal ( )x n :

( ) ( )y n x n k= − . The highpass component of a one level wavelet

analysis of ( )y n  is ( )y ng .

Table 1. The values of the absolute sum and absolute
difference for different biorthogonal filters ( )s = 1 .

Filters AS AD
Biorthogonal (2.4) 0.0000 0.3535
Biorthogonal (2.8) 0.0000 0.3535
Biorthogonal (3.9) 0.1768 0.3535
Biorthogonal (5.5) 0.1772 0.5459
Biorthogonal (6.8) 0.1315 0.4342
Biorthogonal (9.7) 0.0883 0.4349

If k is even, it is proven in [1] that the one level wavelet
transform is shift invariant, therefore we obtain a zero prediction
error if we subtract the original samples ( )y ng  and the predicted

samples ( )x n kg − 2 . Conversely, if k is odd, the absolute sum

between the predicted samples ( )x n sg −  and the original samples

( )y ng  is lower than the absolute difference, for specific values

of s. We show this in the following for the particular case s = 1.

It is easy to prove that the general case of an odd shift k can be
restricted to the particular case k = 1 . We will assume k = 1  in
the remainder of this section, which leads to the highpass
component ( )y ng  given by:

( ) ( ) ( ) ( ) ( ) ( )[ ]y n g x n g p x n p x n pg
p

N
= ⋅ + ⋅ − + +

=
∑0 2 2 2

1
.

We denote by AD and AS the absolute difference respectively the
absolute sum between the shifted wavelet component ( )x n sg −

and ( )y ng ; the expressions of AD and AS for s = 1 are:

( ) ( ) ( )AD x n y n d ng g
n n

= − − =∑ ∑1 ,

( ) ( ) ( )AS x n y n s ng g
n n

= − + =∑ ∑1 .

Taking into account that ( ) ( )g n g n= − , we derive:

( ) ( ) ( )( ) ( ) ( )( )d n g p g p x n p x n p
p

N
= − − ⋅ − + − −

=

+
∑ 1 2 1 2

1

1
,

( ) ( ) ( )( ) ( ) ( )( )s n g p g p x n p x n p
p

N
= − + ⋅ − + + −

=

+
∑ 1 2 1 2

1

1
,

where ( )g N + =1 0 . Since the input signal ( )x n  is a step

function, it can be proven that ( ) ( ) ( )d n d n g n= − = 2 , for every

value n, verifying [ ]0 2≤ ≤n N .

The expression for ( )s n  is:

( ) ( ) ( ) ( )s n s n g n g p
p n

N
= − = + ⋅

= +
∑2 2
1 2

, [ ]∀ ∈ ≤ ≤n N n N,0 2 .

If [ ]n N< − 2  or [ ]n N> 2 , we can show that ( ) ( )s n d n= = 0 .

Finally, the absolute difference and the absolute sum are given
by:
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[ ]
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n

N

= − +
=
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1
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AS g n g p
p n

N

n

N
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−

=
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1
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The values of AD and AS are evaluated for different biorthogonal
filter banks. As we note from table 1, the absolute sum is smaller
than the absolute difference for all the considered filters. We
observe also that AS is zero for the first two filters. Hence, a zero
prediction error can be obtained if the filter coefficients satisfy
the constraint:

( ) ( )
[ ]

g g n
n

N

− + =
=

∑1 2 2 0
1

2

.

Similar calculations are made to derive AD and AS for s ≠ 1. For
all the tested filters, the minima of the absolute sum are reached
in s = 1, and they are smaller than the minima of the absolute
difference. An example is given in Fig. 2, that depicts AD and AS
as a function of s, for the biorthogonal filters (2.4) and (5.5). The
same conclusion can be formulated from Fig. 3 in the case of the
biorthogonal filter (9.7). It results that the smallest prediction
error is attained if ( )y ng  is predicted from ( )x ng − 1  by using

the AS criterion.
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Figure 2. AD and AS as a function of s, for the
biorthogonal filters (2.4) and (5.5).
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Figure 3. AD and AS as a function of s, for the
biorthogonal filter (9.7).

4. ALGORITHM DESCRIPTION

In the above section we have shown that for odd shifts of the step
function a small or even zero prediction error can be found if the

predicted wavelet coefficients are summed to the original
coefficients. If the shift is even, then we have to subtract them to
get a zero error. Unfortunately, these simple rules are not
completely valid for a general signal profile. However,
experiments on photorealistic image sequences suggest that the
prediction error can still be reduced by using these principles. In
this section we describe an algorithm that performs motion
estimation in the wavelet detail images by using two matching
criteria, namely AD and AS. We will compare the resulting
prediction error of our algorithm with the minimal error that can
be reached by just using AD as a matching criterion.

4.1 FS using Absolute Difference

This method performs full-search motion estimation on every
level of the wavelet decomposition by using AD as error
criterion, and calculates the error image by subtracting the
predicted wavelet image from the original image.

In our simulations, we use a 3-level wavelet decomposition, so
the full-search motion estimation is performed in the four
subimages of level 3 and in the six subimages of levels 2 and 1.
To define the block sizes in the detail images we use two
different approaches. In the first one we impose the same block
size in any detail image, while in the second one we use dyadic

block sizes containing 2 2c j c j− −×  coefficients, where j denotes
the decomposition level and c is a constant. We identify this
algorithm as the FS-AD method (full-search using AD) in the
section reporting the experimental results.

4.2 FS using Absolute Sum and Difference

We propose a motion estimation algorithm that performs full-
search motion estimation on every level of the wavelet
decomposition and implements two matching criteria for finding
the best block, namely AS and AD. The block sizes in every level
and the search ranges are specified as in the FS-AD method. Due
to its lowpass nature, in the average image we use only AD as
matching criterion.

In the FS-AD method, the motion vector is determined by the
position of the block in the reference image that minimizes AD. If
we also calculate AS for every search position in the reference
image, then it is possible that the minimum obtained with the AS
criterion is smaller than the minimum given by the AD criterion.
If this is the case, then the motion vector is determined by the
position of the block in the reference image where AS is minimal.
Conversely, if the minimum of AD is the smallest, then the
motion vector will be the same as for the FS-AD method. We
deduce that this method yields a smaller prediction error than the
FS-AD method. We refer to this algorithm as the FS-AS/AD
method (full-search using AS and AD).

One bit for each predicted block has to be recorded as side
information, to distinguish between the motion vectors
determined by the AD, respectively by the AS criterion. In the
encoder (Fig. 1) the motion compensation can use this
information to change the signs of the predicted block
coefficients for which the AS criterion was retained, so that when
the predicted wavelet image is subtracted from the original image
these blocks are summed.



5. RESULTS

The theory from section 3 is illustrated with an artificial
sequence of two images: a square, respectively the same square
shifted to the right with one pixel. Fig. 4 shows the 3 levels
wavelet decomposition performed with the (2,4) biorthogonal
filters on (a) the original square, respectively (b) the shifted
square. The shift variance is clearly visible, because the values of
the vertical edges change due to the shift.

       

(a)                                            (b)

Figure 4. The detail images obtained with a (2,4)
biorthogonal wavelet analysis of (a) the square and (b)
the square shifted to the right with one pixel.

If we apply the FS-AD method to this sequence, we find an error
image which has a MSE of 10.07. For this experiment we used
dyadic block sizes of 24-j× 24-j coefficients, or in shorter notation
(2,4,8) - corresponding to j values (3,2,1). The maximum search
ranges in the detail images are 24-j pixels. If we apply the FS-
AS/AD method, then we find a MSE of 0.84, which implies that
our method enables a nearly perfect prediction of the shifted
square.

We use the well-known “Mobile Calendar” sequence to illustrate
that our FS-AS/AD method also reduces the MSE of the error
image in photorealistic sequences. The images out of the
sequence are transformed with the (9,7) biorthogonal wavelet
filters and are motion compensated to generate the error images.
The motion estimation method uses the preceding image as a
reference for the current image. Fig. 5 shows the MSE’s obtained
with the methods FS-AD and FS-AS/AD, calculated for different
block sizes.
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Figure 5. MSE results for the “Mobile Calendar”
sequence.

It is clear from this figure that our FS-AS/AD method results in
smaller MSE values than FS-AD for the same block sizes.

The experiments also show that for the “Mobile Calendar”
sequence the AS reaches a smaller minimum than the AD for
more than half of the total number of blocks. This is illustrated in
Fig. 6 which shows all blocks on every level. A block is drawn in
white if the AS criterion reaches the lowest minimum or in black
if the AD criterion attains the lowest minimum.

Figure 6. The FS-AS/AD (2,4,8) method attains a
minimum with the AS criterion (white blocks) or AD
criterion (black blocks).

6. SUMMARY

In this paper we show that motion estimation in the wavelet
detail images using the combination of the absolute sum and the
absolute difference reduces the MSE of the error image. We
indicate that for odd shifts of a one-dimensional step function the
absolute sum leads to a zero prediction error if a specific
constraint on the wavelet filter coefficients is respected.
Although this constraint cannot be easily extended for a general
signal profile, as our experiments point out, an additional
reduction of the prediction error is obtained with respect to
techniques which use only the absolute difference as a matching
criterion.
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