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ABSTRACT

As an alternative to existing techniques and algorithms, we inves-
tigate the merit of the H-infinity approach to the equalization of
communication channels. We first look at causal H-infinity equal-
ization problem and then look at the improvement due to finite
delay. By introducing the risk sensitive property, we compare the
average performance of the central H-infinity equalizer with the
MMSE equalizer in equalizing minimum phase channels.

1. INTRODUCTION

Equalization is a well studied problem in the area of communica-
tions. It can be considered as a special case of an estimation prob-
lem with the data model generally described by a linear model of
the type shown in Figure 1. The discrete data sequencefbig passes
through the linear time-invariant channelH(z), which causes inter-
symbol interference (ISI). The observation sequencefyig is then
formed by the addition of an unknown measurement disturbance
fvig with the output of the communication channelH(z). The
purpose is to design an equalizerK(z) which estimatesbi�d from
the observationsfyig, whered � 0 represents a possible delay.
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Figure 1: Linear Data Model

Various structures and methods have been proposed to recover
transmitted data from their filtered and noise corrupted versions,
and each method has its own advantages and disadvantages in
terms of performance and complexity [5]. All these current tech-
niques make some assumption about the underlying statistics and
structure of the model. In many applications, however, the true in-
formation about the model is not available, and the algorithms use
some estimate of the model parameters. For example, in mobile
communications, the channel (and other statistical) parameters are
often estimated from the observations through the use of certain
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training sequences and therefore always contain errors. Time vari-
ation of the parameters and the errors due to tracking is another
important issue. Therefore the question is whether small varia-
tions from the true model, and small disturbances, can cause large
degradation in the performance of the algorithms. This brings us
to the issue of “robustness”.

In this paper, we address the robustness question by approach-
ing the equalization problem from theH1 estimation,[4, 8, 7]
point of view. The richness of robustH1 theory, and especially its
stochastic interpretation of risk sensitive estimation, has been the
basic motivation for our approach. Moreover, the availability of
fast algorithms [4] is another major driving force for looking into
H1 estimation as an equalization alternative. Finally, and per-
haps most importantly, the results obtained in this attempt provide
us with a new and different perspective for the understanding and
analysis of the equalization problem, as well as forH1 estimation
itself.

2. H1 AND RISK SENSITIVE ESTIMATION
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Figure 2: Setup for linear estimation

2.1. H1 Estimation

The basic setup for a general linear estimation problem is illus-
trated in Figure 2. In this setup we assume thatH(z) andL(z)
are causal linear time-invariant filters that map the input sequence
fbig to their respective outputs. The driving inputfbig and the
additive disturbance sequencefvig are assumed to be unknown.
The estimation problem is to design a causal linear time-invariant
estimatorK(z) that estimatessi, the unobservable output ofL(z),
using the observationsfyj ; j � ig. We will denote such estimates
by ŝiji and the resulting estimation errors by~siji = si � ŝiji.
Moreover, letTK(z) denote the transfer matrix that maps the un-
known disturbancesfbig andfvig to the estimation errorsf~sijig.



Thus,TK(z) :

�
b
v

�
! ~s . We may therefore write

TK(z) =
�
L(z)�K(z)H(z) �K(z)

�
(1)

The choice ofK(z), and thereby the estimatesŝiji, depends
on our choice of performance criterion. InH1 estimationK(z) is
chosen to minimize the maximum error gain ofTK(z), also known
as theH1 norm ofTK defined as

kTK(z)k21 = sup
b;v2l2;b;v 6=0

P
1

i=�1
j~sijij

2

q�1
P1

i=1
jbij2 + r�1

P1

i=�1
jvij2

:
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Problem 1 (Optimal H1 Filtering Problem) Find a causal es-
timatorK(z) that satisfiesinfK(z) kTK(z)k21. Moreover, find the
min-max energy gain2opt.

There are very few cases where a closed-form solution to the
optimalH1 filtering problem can be found, and in general one
relaxes the minimization and settles for a suboptimal solution.

Problem 2 (SuboptimalH1 Filtering Problem) Given > 0,
find, if possible, a causal estimatorK(z) that guarantees

kTK(z)k21 � 
2 (3)

This clearly requires checking whether > opt.

It will now be useful to give some flavor of the solution to
Problem 2. (See [4] for more details). We introduce the following
so-calledPopov function,

�(z) =

�
r + qH(z)H�(z��) �qH(z)L�(z��)
�qL(z)H�(z��) �2 + qL(z)L�(z��)

�
;

which can be regarded as a certain indefinite generalization of the
spectral density function,r + qH(z)H�(z��). Then a causal es-
timator,K(z), that achieveskTK(z)k1 <  exists if, and only if,
the Popov function admits a canonical factorization of the form

�(z) =

h
L11(z) L12(z)
L21(z) L22(z)

i h
1 0
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L�11(z
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with

�
L11(z) L12(z)
L21(z) L22(z)

�
andL11(z) causal and causally in-

vertible, andL12(z) strictly causal. If this is the case, then all
possibleH1 estimators of level are given by

K(z) = (L22(z)Q(z)� L21(z)) (L11(z)� L12(z)Q(z))�1 ;
(5)

whereQ(z) is any causal and strictly contractive operator,i.e.,
Q(z) is causal and is such thatjQ(ej!)j2 < 1, for all ! 2 [0; 2�].

An important choice results from takingQ = 0, so that

Kcen(z) = �L21(z)L
�1
11 (z) (6)

which is the so-called “central” filter.

2.2. Risk Sensitive Estimation

Although the aforementionedH1 estimation formulation is a de-
terministic one, it has a nice stochastic interpretation which we
now describe.

Given the basic model in Figure 2, in risk sensitive filtering, [6,
9], we assume that the disturbancesfbig andfvig are stationary
independent Gaussian random processes with variancesq andr,
respectively. The risk sensitive filtering problem is to find a causal
K(z) that minimizes

�(�) =
2

�
log

 
E exp

 
�

2

1X
i=�1

jsi � ŝij
2

!!
; (7)

where� > 0 is known as the risk-sensitivity parameter.
The cost function 7 shows that as we increase the value of�

we put more penalty on large values of error as compared to the
MMSE estimator, which minimizesE(

P1

i=�1
jsi� ŝij

2). How-
ever, the� parameter can not be made arbitrarily large. In [2] it was
shown that for any� � 1

2
opt

, the causalK(z) that minimizes the

risk-sensitive cost function is given by the centralH1 filter corre-
sponding to =

p
1
�

and with energy weightsq andr equal to the
variances offbig andfvig, respectively. In the equalization appli-
cation, only the large values of error, which are greater than the
threshold for detection, are important. Errors below the threshold
do not play a role. Therefore one may expect that the risk sensitive
criterion is a good choice for equalization since it penalizes high
errors more severely than the MMSE criterion. Nonetheless, as
illustrated in future sections, it has certain drawbacks.

3. H1 EQUALIZERS

3.1. The Causal Case

The equalization problem of Section 1 is a special case of the linear
estimation setup withL(z) = z�d. Whend = 0, the equalizer is
constrained to be causal. In [3], the factorization (4) was explicitly
obtained and thereby a characterization for allH1 equalizers was
derived. The main results can be summarized as follows.

(i) If the channelH(z) is non-minimum phase: We have


2
opt = q; (8)

which is the same energy gain obtained fromK(z) = 0,
i.e., not equalizing at all! Therefore there is no hope for
causally equalizing a non-minimum phase channel.

(ii) If the channelH(z) is minimum phase: we have

2opt =
rqjL(ejw)j2

r + qjH(ejw)j2
= 2opt;smoothing:; (9)

where2opt;smoothing is the minimax energy gain for the
“optimal” smoothing filter which turns out to be the cele-
brated Wiener smoother. This implies that one can perform
as well as the non-causal (smoothing) solution!

In the minimum phase case, in [3], it is shown that the central
equalizer is given by

Kcentral(z) = �L21(z)L
�1
11 (z) =

h0(1� 2opt)

h0H(z)� (1� 2opt)R��(z)
:

(10)



where the monic and minimum phase transfer function�(z)
and the scalarR� are found from the standard spectral factoriza-
tion

R��(z)��(z��) =
2

1� 2opt
H(z)H�(z��)� r � 0: (11)

We should also remark that anotherH1 optimal equalizer is
K(z) = (1�2opt)H

�1(z), which is simply a scaled version of the
zero-forcing equalizer. Thus, an appropriately scaled zero-forcing
equalizer isH1-optimal.

Comparison of the error spectra in Figure 3 illustrates that the
smoother outperfroms all other equalizers at every frequency. The
causal MMSE (H2) filter has the best average performance among
the causal equalizers, however the peak value of its spectrum is
greater than the others. The risk sensitive and the scaled zero forc-
ing equalizers have peak spectra equal to the smoother, but the risk
sensitive one has better average performance.
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Figure 3: Comparison of the Error Spectra for the channelH(z) =
1 + :7z�1

3.2. Finite Delay Case

It is clear from the previous section that we need non-causal equal-
izer structures to equalize non-minimum phase channels, which is
equivalent to have finite delay, i.e.d > 0.

In order to illustrate the effect of delay, it will be instructive
to look at the special case of equalizing the single zero channel
H(z) = 1 + az�1, a 2 R.

We know from Section 3.1 that whend = 0,


2
opt =

�
sup!2[0;2�]

r

r+jH(ejw)j2
= 1

1+(1�jaj)2
for jaj < 1

1 for jaj � 1

Delay=1: After some algebraic manipulation, the Popov func-
tion for this case simplifies to

�(z) =

�
2 + a2 + az�1 + az �(z + a)

�(z�1 + a) (1� 2)

�
(12)

To attempt to factorize�(z) as in Equation 4 consider the follow-
ing factorization of the Popov function

�(z) =

h
1 0
�

1
a

1

i�
2 + a2 + az�1 + az 2

a
+ z�1

2
a
+ z 2

a2
� 2

�h
1 �

1
a

0 1

i
;

(13)
observe that the center matrix takes the form of the Popov function
for thed = 0 case. Indeed by making the following substitutions,
Ĥ(z) = �(a+ a2

2
z�1), L̂(z) = 1 = z0 ,r̂ = a2

2
andq̂ = 2

a2
we

can rewrite the Popov function ash
1 0
� 1

a
1

ih
r̂ + q̂Ĥ(z)Ĥ�(z��) �q̂Ĥ(z)L̂�(z��)

�q̂L̂(z)Ĥ�(z��) q̂L̂(z)L̂�(z��)� 2

ih
1 � 1

a
0 1

i
(14)

It thus follows that we need to distinguish between the two cases
whereĤ(z) is minimum phase and wherêH(z) is non-minimum
phase. When̂H(z) is minimum phase, which is the case forjaj <
2, we have


2
opt = sup

!2[0;2�]

r̂q̂

r̂ + q̂jH 0(ej!)j2
(15)

which after some simplification becomes

2opt = sup
!2[0;2�]

1

1 + jH(ej!)j2
= 2opt;smoothing: (16)

WhenĤ(z) is non-minimum phase, which is the case forjaj � 2,


2
opt = q̂ =

2

a2
: (17)

Figure 4 shows the optimal value of as a function ofa.
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Figure 4: Optimal plot for single delay case. Dashed line refers
to smoothing value

Delay � 2: It can be similarly shown [1] that, ford � 2,
2opt = 2opt;smoothing, i.e., a delay of two units is sufficient to
obtain the sameH1 performance as the smoother in equalizing a
single-zero channel.

Unfortunately, there is no known explicit factorization for ar-
bitraryd > 0 and for general non-minimum phase channels. How-
ever, in [3] it has been shown that in order to get an improvement
overopt = 1, the delayd should be chosen greater than the num-
ber of non-minimum phase zeros of the channel,i.e., the number
of zeros outside of the unit circle.



4. COMPARISON OF CENTRAL H1 AND H2

EQUALIZERS IN EQUALIZING MINIMUM PHASE
CHANNELS

In this section of the paper, we will compare the centralH1 and
theH2 equalizers in terms of average BERs. Figure 5 shows that
theH2 and centralH1 equalizers have the same average BER
performances forH(z) = 1 + 0:5z�1.
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Figure 5: BER vs SNR curve for the channelH(z) = 1+0:5z�1:
Solid line-Risk Sensitive Equalizer, Dashed Line-MMSE Equal-
izer

However as illustrated in Figure 6, theH2 equalizer has better
average BER performance than the centralH1 equalizer for the
channelH(z) = 1 + 0:95z�1.
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Figure 6: BER vs SNR curve for the channelH(z) = 1+0:95z�1 :
Solid line-Risk Sensitive Equalizer, Dashed Line-MMSE Equal-
izer

In general, for the various channels that we have studied, when
H(z) and the signal statistics are known exactly, the risk sensitive
and MMSE equalizers have either similar BERs, or the MMSE
equalizer outperforms the risk sensitive one. It thus may appear
that, there is no gain in using centralH1 equalizers, compared
to MMSE ones, in the ideal setup. However, in the face of model

uncertianity and lack of statistical knowledge, it is expected that
theH1 equalizer will have acceptable performanceH2 equalizer
[1].

5. CONCLUSION

In this paper, we introduced theH1 criterion as an alternative
method for the equalization of communication channels, which
concentrates on the worst case performance whereas the previous
algorithms concentrate on the average performance. We showed
that causalH1 filter has same worst-case performance as the non-
causal smoothing filter in equalizing minimum phase channels.
For non-minimum phase channels we need a number of delays
at least equal to the number of non-minimum phase zeros of the
channel. Therefore, study ofH1 estimation provides us with
a rigorous basis for the importance of the concepts of minimum
phase channels and delay in the equalization problem.

We looked at the centralH1, or risk sensitive, filter as a
choice which has good average performance besides its optimal
worst case performance . We showed that it has good average
properties due to its stochastic interpretation although it does not
appear to be better than the MMSE equalizer in terms of BER in
the ideal case.

Formulation of equalizers for more general case and the per-
formance under modeling errors is the area that we are currently
pursuing.
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